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Graphical Abstract

Channel Grouping Vision Transformer for Lightweight Fruit and
Vegetable Recognition

Chengxu Liu, Weiqing Min, Jingru Song, Yancun Yang, Guorui Sheng, Tao
Yao, Lili Wang, Shuqgiang Jiang
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We present a novel lightweight classification network, CGViT(Channel
Grouping Vision Transtormer), specifically designed for fruit and vegetable
recognition. CGVIT utilizes a channel grouping structure combined with
the Transformer-based fusion to extract distinguishing features from fruit
and vegetable images.
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Highlights

Channel Grouping Vision Transformer for Lightweight Fruit and
Vegetable Recognition

Chengxu Liu, Weiqging Min, Jingru Song, Yancun Yang, Guorui Sheng, Tao
Yao, Lili Wang, Shuqgiang Jiang

e We adopt a Channel Grouping Vision Transformer (CGViT) for lightweight
fruit and vegetable recognition.

e We benchmark various lightweight deep learning networks on these four
fruit datasets.

e Evaluations on four fruit and vegetable datasets demonstrate that our
approach achieves state-of-the-art performance while consuming fewer
resources.
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Abstract

Recognizing fruit and vegetable is crucial for improving processing ef-
ficiency, automating harvesting, and facilitating dietary nutrition manage-
ment. The diverse applications of fruit and vegetable recognition require de-
ployment on end devices with limited resources, such as memory and comput-
ing power. The key challenge lies in designing lightweight recognition algo-
rithms. However, current lightweight methods still rely on simple CNN-based
networks, which fail to deeply explore and specifically analyze the unique
features of fruit and vegetable images, resulting in unsatisfactory recogni-
tion performance. To address this challenge, we propose a novel lightweight
recognition network termed Channel Grouping Vision Transformer (CGViT).
CGVIT utilizes a channel grouping mechanism and half-convolution to en-
hance feature extraction capability while reducing complexity. This design
enables the model to capture three discriminative types of features from im-
ages. Subsequently, the Transformer is employed for feature fusion and global
information extraction, ultimately creating an efficient neural network model
for fruit and vegetable recognition. The proposed CGViT approach achieved
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recognition accuracies of 71.26%, 99.99%, 98.92%, and 61.33% on four fruit
and vegetable datasets, respectively, outperforming state-of-the-art meth-
ods (MobileViTV2, MixNet, MobileNetV2). The maximum memory usage
during training is only 6.48GB, which is merely 13.8% of that required by
state-of-the-art methods(MobileViTv2). The fruit and vegetable recognition
model proposed in this study offers a more profound and effective solution,
providing valuable insights for future research and practical applications in
this domain. The code is available at https://github.com/Axboexx/CGViT.

Keywords: Fruit Recognition, Vegetable Recognition; Lightweight, Deep
Learning, Computer Vision.

1. Introduction

The recognition of fruit and vegetable plays a crucial role in automated
harvesting, quality inspection and analysis, intelligent food processing, and
intelligent nutrition management of diet. Traditional methods for the recog-
nition of fruit and vegetable mainly involve manual operations, which are
highly subjective and costly(Aleixos et al., 2002; Yang et al., 2023). In re-
cent years, with rapid technological advancements, automated recognition
has gradually matured. Techniques such as infrared imaging, multispectral
and hyperspectral technologies have yielded promising results(Feng et al.,
2019; Gaikwad & Tidke, 2022; He et al., 2024), but their reliance on expen-
sive equipment or complex spectroscopic methods makes them difficult to
widely deploy in industrial settings. The rapid development of artificial intel-
ligence, particularly computer vision, has brought qualitative improvements
to fruit and vegetable recognition, offering advantages such as high efficiency,
accuracy, and low cost(Faria et al., 2021; Escamilla et al., 2024). These tech-
nologies can adapt to most operational scenarios, largely replacing manual
labor and significantly driving industrial progress. For example, automated
fruit and vegetable recognition has improved production line efficiency, pro-
viding substantial benefits to the food processing industry(Rehman et al.,
2019; Dhanush et al., 2023). In the domain of food computing(Min et al.,
2019), the recognition of fruit and vegetable is increasingly important for var-
ious tasks such as selection, classification, nutritional analysis, and dietary
recommendations(Nyalala et al., 2019; Xu et al., 2019; Siddique & Srizon,
2023). Accurate and efficient recognition in automated harvesting(Xu et al.,
2022; Bai et al., 2023), quality inspection and analysis(Zhu et al., 2022; Li
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et al., 2023), and subsequent food processing is critical as an early-stage
step. The potential of fruit and vegetable recognition is also reflected in
self-checkout services in supermarketsHameed et al. (2020).

Currently, convolutional neural networks (CNNs) have demonstrated out-
standing performance in vision-based fruit and vegetable recognition. Gill
et al. (2022),Taner et al. (2024), andPan et al. (2024) have employed CNNs
or their various derivatives for fruit and vegetable recognition, proving that
deep models outperform traditional methods and offer significant advan-
tages. The role of deep neural networks in fruit and vegetable recognition has
also been explored by Nguyen et al. (2021) and Gupta & Tripathi (2024).
Related works extend to tasks such as fruit and vegetable volume estima-
tion(Ziaratban et al., 2017; Saikumar et al., 2023), disease(Gupta et al.,
2024, 2025) , grade classification(Yogesh et al., 2020; Lee et al., 2020; Mputu
et al., 2024), and control issues in processing(Li et al., 2021; Wang et al.,
2021). However, most vision-based fruit and vegetable recognition methods
still rely on existing general-purpose deep models without fully considering
the unique characteristics of fruit and vegetable images. Consequently, the
effectiveness of these methods is somewhat limited.

Meanwhile, improving the efficiency of training and inference for fruit
and vegetable recognition models and deploying these models on resource-
constrained edge devices has become increasingly important. On the one
hand, with the rapid development of the Internet of Things (IoT) and the
widespread use of mobile phones, fruit and vegetable recognition can only
be truly productive when deployed on such edge devices, enabling it to play
a role in front-line production and daily life. For instance, users can con-
veniently perform real-time fruit and vegetable recognition and information
retrieval on mobile devices. In fields such as shopping, dining, and agri-
culture, smartphones or small cameras can be used to identify fruit and
vegetable, providing real-time data on product quality and nutritional infor-
mation, thereby enabling more informed decision making. On the other hand,
efficient training on the server side requires model compression to achieve the
same or even better results with fewer resources, thereby promoting energy
conservation, emission reduction, and green artificial intelligence.

Current fruit and vegetable recognition algorithms primarily rely on high-
performance computing devices, such as servers and desktop computers, to
process complex image data and perform model inference. Although the com-
putational power of edge devices has been steadily increasing, they still face
significant limitations compared to traditional large-scale computing equip-
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Figure 1: Differences in the first type of characteristics can make a great difference in the
results.
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ment in terms of storage capacity, memory resources, power consumption,
and processing speed. Therefore, it is crucial to design specialized lightweight
fruit and vegetable recognition algorithms that adhere to resource constraints
while ensuring high accuracy in computationally limited work environments.
Based on these considerations, we have thorotighly explored the unique char-
acteristics of fruit and vegetable images and designed a lightweight deep
neural network specifically for fruit and vegetable recognition.

Fruit and vegetable images exhibit three hierarchical levels of features:
(1) The first level consists of relatively apparent surface attributes, such as
color and shape. By amnalyzing these attributes, we can preliminarily infer
the identity of the fruit or vegetable. Although these features are relatively
straightforward and can be extracted without complex operations, they play
a crucial role in fruit and vegetable recognition. As shown in Fig. 1, if the
information includes a long, green object, it may correspond to vegetables
like luffa or zuechini. If the color changes to purple, it could indicate foods
like eggplant. If the shape becomes spherical, it might represent fruits like
watermelon. This first category of features is simple and evident, guiding us
toward the correct direction in reasoning. The same applies to deep models,
where the first level of features plays a critical role in the model’s judgment.
However, relying solely on these features is insufficient for accurate decision-
making. In different working environments, relying on shallow features alone
may lead to erroneous judgments under low-light conditions. (2) Compared
to the more obvious first category, the second level of features is less con-
spicuous and harder to identify. These features include complex textures,
patterns, smoothness, and small granular protrusions in fruit and vegetable
images. For example, although both luffa and zucchini are long, green vegeta-
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bles, the surface of luffa is rougher, while the surface of zucchini is smoother.
Similarly, the surface of a cucumber is relatively rough and often has small
granular protrusions. Therefore, hidden features such as texture and pattern
are critical to the accuracy of fruit and vegetable recognition. (3) The third
level of features involves depth information that is difficult for the human eye
to capture, as well as deep connections between the different manifestations
of similar fruits and vegetables. Fruits and vegetables may exhibit numerous
variations, such as changes in growth stages and different forms of presen-
tation. For instance, a whole apple differs in characteristics from an apple
cut into pieces or slices, but there remains an inherent connection between
them. This connection may represent deeper features that are challenging
for humans to comprehend. To address this limitation, we have developed a
specialized network model. To our knowledge, most current lightweight fruit
and vegetable recognition methods do not address these limitations. Some
studies suggest improving model performance by incorporating additional
high-level semantic information, but this approach involves adding additional
information and computational resources(Rachmawati et al., 2022).

Based on the aforementioned characteristics of fruit and vegetable images,
we used the partial convolution from FasterNet proposed byChen et al. (2023)
and self-attention mechanisms as a baseline to construct our model. We intro-
duced an improvement to the partial convolution, termed half-convolution,
which enhances its feature extraction capability with a slight increase in the
number of parameters. This enhancement allows for better extraction of the
three types of feature while maintaining the requirements for a lightweight
model. To extract these three types of features more effectively, we divided
the feature map channels into different channel groups, with each group con-
taining one third of the total channels. Then, half-convolution was applied
separately to each group to improve feature extraction performance. Since
there is no-information exchange between channel groups during the convo-
lution stage, global information between different groups may be lost. To
address this issue, we adopted the lightweight Transformer mechanism, Mo-
bileViT, proposed byMehta & Rastegari (2021), to merge the output feature
maps of different channel groups. Current research also explores the use of
attention mechanisms in the domain of fruit and vegetable recognition(Min
et al., 2023), which improves the model’s ability to handle global information
in fruit and vegetable images.

Based on the aforementioned analysis, we propose a lightweight network
model for fruit and vegetable recognition, termed CGViT (Channel Group-
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Figure 2: A simple comparison between CGViT and other lightweight networks on the
Fru92 dataset(Hou et al., 2017). With roughly equivalent FLOPs and parameters, CGViT
achieved the best performance. More detailed and comprehensive experimental results can
be found in the experimental section of the paper.

ing Vision Transformer). This model integrates a novel lightweight convolu-
tional module based on half-convolution as its backbone. Additionally, we
incorporate a lightweight Transformer module to improve the neural net-
work sensitivity to global features. CGViT is capable of capturing various
types, levels, and granularities of features, leading to more robust and com-
prehensive recognition results. We conducted extensive evaluations on four
benchmark fruit datasets, which differ in categories, the number of images,
and shooting conditions, ranging from single fruits or vegetables per image
to complex scenes captured in grocery stores or markets. The datasets cover
between 50 and 131 categories, with approximately 3,500 to over 70,000 im-
ages. Our method achieved outstanding recognition performance across all
datasets. Fig. 2 displays a subset of the experimental results. To further
assess the effectiveness of the model, we visualized CGViT and found that it
successfully extracts salient and discriminative features from fruit and veg-
etable images. Moreover, we conducted extensive comparative experiments
with several lightweight models, including the ShuffleNet series, MobileNet
series, and MobileViT series, across the four fruit and vegetable datasets.
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The experimental results demonstrate the effectiveness of our approach.We
summarize our contributions as follows:

1. Based on the characteristics of fruit and vegetable images, we employed
the channel grouping for three types of features extraction, combined
with the improved half-convolution, which improved recognition accu-
racy while reducing the model size.

2. By enhancing global feature extraction capabilities through Transformer-
based fusion, we designed and implemented the lightweight fruit and
vegetable recognition model CGViT, effectively reducing parameter
and computational complexity while ensuring high accuracy.

3. Extensive experiments were conducted on four benchmark fruit and
vegetable datasets to evaluate CGViT and various state-of-the-art(SOTA)
lightweight deep neural networks, validating the effectiveness of CGViT.

2. Materials and Methods

2.1. Fruit and vegetable datasets

Through extensive research, many large-scale fruit and vegetable image
datasets have been released. These datasets contain a wide variety of images
of fruit and vegetable captured in different scenes. They are designed for spe-
cific tasks, often featuring a broader range of categories and diversity than
images typically gathered in laboratory or industrial settings. The datasets
include a rich array of fruit and vegetable characteristics and dynamic back-
grounds, allowing for more accurate evaluation of a model’s performance in
real-world production environments. Consequently, this paper selects the
following four fruit and vegetable datasets to comprehensively evaluate our
model. The datasets is available at https://huggingface.co/datasets/Axboexx
/CGViT Datasets/tree/main

Fru92 (Hou et al., 2017) is a subset of the VegFru dataset and contains
92 fruit categories with a total of 69,614 images. Most of the images in the
VegFru dataset were obtained from online searches and were then carefully
filtered to ensure high quality. In Fru92(Hou et al., 2017), each fruit category
has at least 200 images. We used the first 100 images from each category for
training, the next 50 for validation, and the remaining images for testing. The
images were sourced from various platforms, including Google and Flickr.

Fruits-360 (Muresan & Oltean, 2018) contains 73,410 images across 107
fruit types, making it the largest dataset in this category. It was developed
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Figure 3: Images from different datasets.

in a controlled laboratory setting, using a low-speed motor that rotates the
fruit against a white background to capture images from various angles. The
motor rotates at 3 revolutions per minute (rpm), and a 20-second video is
recorded to capture a 360-degree view of the fruit. The training set contains
54,963 1mages, while the test set contains 18,447 images.

FruitVeg-81 (Waltner et al., 2017) comprises 15,737 images from 81
categories of fresh fruit and vegetable, taken by five mobile phones in a
SPAR grocery store. The training set consists of 9,378 images, while the test
set consists of 6,359 images.

Hierarchical Grocery Store (Fru) (Klasson et al., 2019) is part of the
“Hierarchical Grocery Store” dataset and comprises 3,480 images covering
50 different categories. Klasson et al. (2019) collected these images from



Journal Pre-proof

18 different grocery stores, including their fruit and vegetable sections. To
ensure that the images were captured in natural conditions, they were taken
with a 16-megapixel Android smartphone camera from different distances and
angles. Notably, background noise was preserved to more closely resemble
a typical grocery store environment. For each category, 60% of the images
were randomly selected for training, 10% for validation, and the remaining
30% for testing.

2.2. CGViT
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Figure 4: Overview of CGViT. (a) Specific elements of each block, (b) efficiently and
cost-effectively generate additional feature maps. (c) a replacement for traditional convo-
lution. (e) enables richer and more comprehensive feature extraction. (f) facilitates global
information exchange and integrates feature maps from (e). Note that (f) is applied in
Block 3-5.

Fig. 4 shows the basic framework of CGViT.The Introduction highlights
that fruit and vegetable images have three distinct types of feature. The
first type consists of simple features, such as color and shape, which are
captured in the shallow layers of the network. The second type of features,
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extracted primarily by intermediate layers, includes complex textures, surface
smoothness, and fine granular protrusions. These features are crucial in dis-
tinguishing visually similar but intrinsically different categories of fruits and
vegetables. For example, subtle differences in surface roughness can differ-
entiate between similarly shaped green vegetables such as luffa and zucchini.
The third type of characteristic, captured by the deep layers, includes not
only depth information but also intrinsic relationships among different forms
of the same fruit or vegetable, such as whole, sliced or peeled forms.

The channel grouping processes different channels of the feature map
through multiple independent convolutions, making it more sensitive to dis-
criminative features in fruit and vegetable images. This ensures that the
extracted features are diverse and comprehensive.. For example, in the early
stages of the network, fewer convolutional operations are performed, primar-
ily to extract simpler features such as color “and shape. Channel grouping
enables differential feature extraction across distinct convolution operations,
ensuring diversity and completeness in feature extraction.

However, since the channel grouping isolates feature map channels and
processes them independently throughout the feature extraction process, no
information exchange occurs between channel groups. This limits the net-
work’s ability to gather global information, which is often critical to accurate
recognition. To address:this limitation, a Transformer-based fusion is incor-
porated to ensure that CGViT captures sufficient global information. These
two mechanisms: channelsgrouping and Transformer-based fusion, consti-
tute the most critical components of CGViT for feature extraction. The
remaining components primarily contribute to reducing CGViT parameters
and FLOPs.

For the input image, CGViT first performs a cost-effective linear oper-
ation (Han et al., 2020) to increase the dimension of the feature map. It
maps different information of the feature map to different dimensions in
the early stage of the network, then groups the feature map by channels,
using half-convolution to extract features for each channel group. This ap-
proach enhances CGViT’s generalization ability without increasing the net-
work parameters and FLOPs. After several sets of half-convolution calcu-
lations, a Transformer-based fusion at the end fuses and exchanges feature
information between different channels. The architecture of CGViT ensures
the targeted extraction of different discriminant features of fruit and veg-
etable images while avoiding the problem of missing global features through
the Transformer-based fusion. The design of CGViT actually encompasses

10
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some modules with broad applicability, yet its core optimizations are tai-
lored to the characteristics of fruit and vegetable images. The reasons have
been described above. Its performance advantages in this task stem from a
deep consideration of the characteristics of fruit and vegetable images and
resource-constrained environments. Next, we describe the main components
of CGVIT in detail. The following is the pseudo code of CGViT. Let Input
and Output denote the input data and the corresponding output results,
respectively. The variables h and w represent the height and width of the
feature map, while ¢ denotes the number of channels and a indicates the num-
ber of channels per group. The value 3 is used illustréatively in the pseudo
code to indicate the number of groups. The variaplevelasses refers to the
total number of classification categories. As the feature anap is processed, its
spatial dimensions and channel count may vary, resulting in corresponding
changes in ¢ and a. The symbol f’ denotes“the €nvolution kernel, and k
represents its size. Variables m and s represent’ the number of channels in
the new feature maps X; and Xs.

Algorithm 1 CGViT

Require: Input € R™>w*30q =¢/3
Ensure: Output € RI*classes
X < Resize (Input) €R?24x224x3
for v+ 1,2,3,4,5 do
X, — X % f/,f/ c chkxkxm’Xl c RI xw'xm
Xy ¢ Oup(X),Vao=1,--- m,B=1,---,5 Xy € RV*W'*s
X « Concat (X7, X3)
A; < split(X [a,a,a]),j =1,2,3
X = Concat{Conv(A;[h,w,0 : §
if > 3 then
X < Transformer_based_fusion(X)
end if
end for
Output < classifier(X)

), Ajlh,w, 5 +1:al},7=1,2,3

2.2.1. Channel Grouping
The channel grouping mechanism is widely used in image recognition
and classification. Variations in fruit and vegetable images are simpler and

11
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rarely undergo significant changes unless they are prepared as a dish. The
channel grouping mechanism employs multiple independent convolutions to
process different channels of the feature map, thereby being more sensitive
to the discriminative features of fruit and vegetable images. This ensures
that the features extracted are more diverse and complete. For instance,
in the early stages of the network, the image undergoes fewer convolutional
computations, extracting only simpler features (such as color, shape, etc.).
The channel grouping mechanism allows different convolutions to perform
differentiated feature extraction, ensuring the diversity and completeness of
image feature extraction. Therefore, this strategy is particularly suitable for
recognizing fruit and vegetable images, as illustrated in Fig. 4(e).

Moreover, channel grouping can effectively reduce the number of parame-
ters and computations required by the model, which is crucial for construct-
ing lightweight models. The channel grouping mechanism and its variants
have been extensively studied in computer vision tasks. For example, in
ShuffleNet (Zhang et al., 2018), the dense point convolution (He et al., 2016)
in the Bottleneck module of ResNet is replaced by channel grouping convolu-
tion. This improves performance of the network while reducing the number
of parameters and computations, making it lighter. The concept of channel
grouping is also applied in MixNet (Tan & Le, 2019), where convolutions
of different sizes are used for different channels of the feature map. This
approach captures feature extraction modes of varying resolutions, achieving
excellent performance.

Specifically, the input of the channel grouping mechanism is a three-
dimensional tensor:

Xl c ]thwxc (1)

where w-is the width of the feature map, A is the height, ¢ is the number of
channels, and [ represents a layer in the basic module. The output result is
a new feature map of the same size as X"

Al c thwxc (2)

Channel Grouping of CGVIiT as follows:

For the input data:X™Put ¢ R>wxe it is divided into three parts evenly
according to ¢, that is X" € RM®xe j = 1,2 34 = ¢/3, Maybe i is
not divisible by three, we add the undivided part to X3*#“. Therefore,
Xwut — Cloneat{ X", X3 X" Through channel grouping, CGViT

12
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can extract diverse features from fruit and vegetable images with fewer pa-
rameters and reduced computational complexity. The shallow layers are used
to extract simple features such as color and shape, the middle layers extract
more subtle features such as texture, smoothness, and patterns, and the deep
layers extract abstract and complex information, including the connections
between different appearances of the same fruit or vegetable, such as slic-
ing and peeling. Although traditional CNNs and high-performance methods
have demonstrated effectiveness in general fruit and vegetable recognition
(Sun et al., 2021), existing research primarily aims to achieve high accuracy
in environments where resources are not a constraint. However, lightweight
neural networks designed for resource-constrained scetiarios-often require spe-
cialized design, while also maintaining the ability te extract features from
fruit and vegetable images, such as subtle surface textures, internal struc-
tural connections, and variations between different forms. This limitation
has prompted the development of CGViT,/in which we integrate mechanisms
such as channel grouping to enhance feature-¢xtraction while maintaining a
lightweight architecture suitable for“deployment on edge devices.  Chan-
nel grouping helps CGViT extract diverse features from fruit and vegetable
images. Additionally, the feature map is divided into three parts because
CGViT is a lightweight network, and c is not large in each layer. If the num-
ber of groups increases; the number of channels in each group will be very
small, and different groups may contain very similar features. This would
increase the computational cost without improving network performance. In
the experimental section; experiments with different numbers of groups will
be designed to.verify that ¢ = 3 is better.

2.2.2. Half-convolution

Since CGVIT is a lightweight network designed for mobile devices and
micro-end devices, we do not use traditional convolutions that are more com-
putationally intensive, but use half-convolutions improved based on partial
convolutions (Chen et al., 2023). Research in Chen et al. (2023) points out
that partial convolution(Chen et al., 2023) extracts spatial features more
effectively while reducing redundant calculations and memory accesses. half-
convolution that we improved on this also has this advantage. We first review
the traditional Depthwise Separable Convolution(Howard, 2017). For an in-
put of size I € R"™%X¢ ¢ convolution kernels of size W € R*** are used to
calculate the output O € R"w*¢ Each filter performs spatial sliding on the
input channel and contributes to one output channel. The Depthwise Sepa-

13
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rable Convolution(Howard, 2017) reduces its FLOPs to h x w x k* x ¢, which
can effectively reduce FLPOs. However, the subsequent Pointwise Convolu-
tion(Howard, 2017) may cause a relatively large loss of accuracy. Therefore,
in practice, the channel number ¢ of Depthwise Convolution(Howard, 2017)
increases to ¢ (¢’ > ¢), which will trigger more frequent memory accesses, may
bring non-negligible delay, and reduce the overall computing speed, especially
for I/O affected limited terminal equipment. According to the research of
Chen et al. (2023), the number of memory accesses is upgraded to

hxwx2d+k xd~hxwx 2 (3)

which will be higher than the number of accesses of normal convolution, that
is
hxwx2c+k*x c?ahxwx2c. (4)

Therefore, to reduce the computational cost and reach the limitations of
mobile devices or micro-end devices, we use half-convolution, which is an im-
provement on partial convolution to extract features from fruit and vegetable
images. Fig. 4(c) shows the basic principle of half-convolution.

Specifically, half-convolution only applies normal convolution to half of
the input channels for feature extraction. (The partial convolution used as
the baseline only uses a quarter of the number of channels. Since CGViT
is a lightweight network with fewer network layers, we use more channels to
improve its performance. ), the remaining channels remain constant. Simul-
taneously, the input channels of the half-convolution are equal to the output
channels, resulting in the FLOPs of the half-convolution being

hxwxk*xc} (5)

where ¢, = £, the FLOPs of a folded convolution are one-fourth that of
a regular convolution. At the same time, half-convolution also has smaller
memory access, that is

hxwx2c,+k*xcf ~hxwx 2 (6)

compared with traditional convolution, the memory access is reduced by half.

For the second half of the input channel, we keep it unchanged. Although
these channels have not been subjected to convolution operations, they still
contain relevant features of fruit and vegetable images and will also play
an important role in subsequent calculations, such as in the Transformer

14
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fusion stage, and will also be involved in calculations. So, the formula for

half-convolution is as follows, defining the input data and output results as
X e thwxc Y € ]thwxc

Y = Concat{Conv (X[h,w,ozg]> vX[h,w,§+1;c]}- (7)

2.2.3. Transformer-based Fusion

In Section 2.2.1, we propose channel grouping to efficiently extract three
distinct types of feature from fruit and vegetable images at a lower computa-
tional cost. But it will also bring some disadvantages. Since the input chan-
nels are separated from the beginning and processed individually through
half-convolution throughout the entire feature extraction process, each chan-
nel group remains isolated with no information exchange with other channel
groups. This is not conducive to the network model collecting global infor-
mation on fruit and vegetable images, and global information usually plays
an important role in the recognition process. Therefore, we introduce the
separable self-attention mechanism (Mehta & Rastegari, 2022), which is an
improved method based on the MHA (multi-head attention mechanism) in
MobileViTV1 (Mehta & Rastegari; 2021). Compared with the O (k%) time
complexity of MHA, separable self-attention can achieve a linear time com-
plexity of O (k). The separable self-attention mechanism will have greater
advantages when faced with mobile devices or micro-end devices with limited
computing power. In CGViT, the lightweight fusion mechanism based on the
separable self-attention mechanism(Mehta & Rastegari, 2022) is at the end
of each basic CGViIT module and is responsible for the task of information
exchange between channels.

It is worth noting that we did not use the Transformer for the block in
the early part of the network. The reason is that in the early stage of the
network, the images are not fully utilized, and the number of channels of the
feature map is also small, and it does not contain a lot of depth information,
if the Transformer-based fusion is applied, the effect is not obvious and it will
also consume more computing resources and storage resources. In Section
4.1, ablation experimental results will be presented to support this view.

2.2.4. Linear Expansion of Dimensions

The deep network must continuously increase the dimensionality of the
feature map during calculation to extract more depth information. Using
normal convolutions to increase the dimensionality of feature maps results
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in more parameters and an increased computational load, which is incon-
sistent with our goal of building a lighter fruit and vegetable recognition
model. Therefore, we use the method proposed in GhosNet (Han et al.,
2020) to linearly increase the dimensionality of the feature map, as shown in
Fig. 4(b). We add the linear dimensionality-raising operator to CGViT to
generate more feature maps with fewer parameters and FLOPs. Based on
the findings of Han et al. (2020), conventional neural networks often gener-
ate numerous redundant feature maps. The authors analyzed ResNet50 (He
et al., 2016) and observed that many of these feature maps were strikingly
similar. By employing a straightforward linear transformation method, these
redundant feature maps can be derived with significantly fewer parameters
and computational effort, resulting in a more efficient process. Specifically,
according to the research by Han et al. (2020), given data X € R&h*w
where ¢ is the number of channels, h and w are the height and width of the
input data. If the convolution operation to generate n feature maps can be
expressed as:

Y=X%f4b (8)

where * represents the convolution operation, b represents the deviation term,
Y € RV*w'*n i the output data of this layer, with n channels, f € Rexkxkxn
is the convolution kernel of this layer, and k is the convolution kernel size.
Therefore, the number of FLOPs required for this layer is n x A’ x ¢ X
k?. The author emphasizes that it is unnecessary to utilize many FLOPs
and parameters to create redundant feature maps. Many feature maps can
be derived through simple linear transformations using a limited number of
original feature maps. The process starts with generating a set of m original
feature maps through standard convolution:

Y =X« f (9)

fl € Rexkxkxm py < n. To further obtain the required n feature maps, the
author proposes to use a simple linear operation on each original feature map
in Y’ to generate new feature maps:

yiyj:@iyj(yg),wzl,...m,jzl,...,s (10)

where y; is the ¢ — th original feature map of Y’, and ®;; is the j — th
linear operation used to generate the j — th new feature map y*/. Therefore,
m X s new feature maps can be obtained, and finally Y’ and %/ are spliced
to obtain the output of the Linear Expansion of Dimensions.
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3. Model training and evaluation

3.1. Model training

The operating system version is Ubuntu 20.04 LTS. We use the Pytorch
1.12.0(Paszke et al., 2017), Python 3.8 to construct our model, which is
then trained on a NVIDIA A800 GPU (80GB), Intel(R) Xeon(R) Platinum
8358 CPU @ 2.60GHz, 64GB RAM, 1TB SSD. During the experimental
data preprocessing, the input image size was resized to 256 x 256 and
then randomly cropped to 224 x 224. Additionally, random horizontal
flipping was applied to augment the images during model training. During
testing, the input images were resized to 256 x 256 and then center-cropped
to 224 x 224. All networks are trained directly on four datasets, optimized
using stochastic gradient descent with a batch size of 128, a momentum of
0.9, and a weight decay of 10~*. The initial learning rate is set to 1072, and
the learning rate is adjusted using CosineAnnealinglL.R.

3.2. Model evaluation

The software and hardware settirigs in the evaluation are the same as
Section 3.1. Model training. diithe evaluation stage, the center of the 256 x
256 pixel image is cropped te 224 x 224 pixels and normalized. We use both
Top-1 accuracy (Top-1 Acc.) and Top-5 accuracy (Top-5 Acc.) as evaluation
metrics. Top-1 accuracy represents the percentage of predictions in which
the top guess of the model.matches the category of ground truth. Similarly,
Top-5 accuracy represents the percentage of predictions where the correct
category is among the top five guesses made by the model.

4. Results and discussion

4.1. Ablation study

We first evaluate the effectiveness of each component within CGViT.
Our baseline network is FasterNet. We gradually add different components,
namely the Channel Grouping and the Fusion mechanism, to verify that each
method plays a positive role in fruit and vegetable image recognition.

The experimental results are presented in Table 1. The results indicate
that the performance of the model improves progressively with the addition
of different methods. The channel grouping mechanism enables the model to
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Table 1: CGVIT ablation experiment results (%).

Hierarchical
Method Fru92 Fruits-360 FruitVeg-81 Grocery
Store (Fru)
Top-1 Top-5 Top-1  Top-5 Top-1 Top-5 Top-1  Top-5
Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.
Base 55.37 83.02 99.89 99.90 95.37 99.70 56.14 87.96
BasetChannel ) 50 g461  09.90  99.99 9646 9979  57.60  88.50
Grouping
Base+Channel
Grouping+ 64.83 88.07 99.99 100.00 98.54 99.90 58.33 89.58
Transformer

extract features from different categories in a more targeted manner, thereby
enhancing the robustness of method. Additionally, the fusion mechanism
addresses the issues introduced by the channel grouping mechanism. This
mechanism facilitates the exchange of information between different chan-
nel groups, further improving the ability of the method to extract global
information.

We conducted additional experinients to evaluate the impact of the num-
ber of channel groups on the performance of CGViT. Specifically, the num-
ber of channel groups was set to 2 and 4, and the experiments on the Fru92
dataset(Hou et al., 2017). The results are as follows:

Table 2: The expériniental results of CGViT on Fru92 with 2 groups.
Method — Groups Param(M) FLOPs(G) Top-1(%) Top-5(%)
CGViT-sl 2.54 0.54 65.61 87.07

CGViT-s2 . 4.43 0.79 68.33 89.83

Table 3: The experimental results of CGViT on Fru92 with 4 groups.
Method — Groups Param(M) FLOPs(G) Top-1(%) Top-5(%)
CGViT-s1 2.29 0.46 65.91 88.12

CGViT-s2 4 4.36 0.74 67.37 89.68
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According to Table 2 and Table 3, the impact on CGViT-s2 is greater.
When the number of groups decreases or increases, the results are reduced.
When the number of groups is 3, the Top-1 accuracy of CGViT-s2 on the
Fru92 dataset(Hou et al., 2017) is 71.26%. Therefore, from the experimental
results, the number of groups 3 is more suitable for CGViT.

Table 4: Experimental results of adding Transformer-based fusion.
Param(M) FLOPs(G) Top-1(%) Top-5(%)

CGViT-s1-T 2.46 0.92 68.11 89.25

CGViT-s2-T 7.71 8.58 72.54 91.25

The results in Table 4 show that adding more Transformer-based fusion
in the early stage of CGViT does not significantly improve the performance,
but consumes more resources.

4.2. Comparison with state-of-the-art

We list the state-of-the-art lightweight networks on four fruit and veg-
etable datasets, including MobileNetV2 (Sandler et al., 2018), GhostNet
(Han et al., 2020), MobileViTv2(Mehta & Rastegari, 2022) and FasterNet
(Chen et al., 2023). The experimental results are listed in Table 5. The ex-
perimental results indicate that the performance of CGViT surpasses other
methods (s1, s2 represent CGViT with different FLOPs and parameters).
Our method achieves the best performance in both Top-1 and Top-5 accu-
racy.

Our method demonstrates superior performance compared to all baseline
and other lightweight models on simpler fruit datasets such as Fruits-360 and
FruitVeg-81(Waltner et al., 2017). These results confirm the effectiveness
of CGVIiT in fruit and vegetable image recognition. Furthermore, CGViT
exhibits robust performance on more complex datasets, indicating its poten-
tial to excel in real-world scenarios involving intricate fruit and vegetable
images. MobileViTV2(Mehta & Rastegari, 2022) also stands out on the
Fru92(Hou et al., 2017) dataset, likely due to its higher parameter count and
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Table 5: Comparison of performance on four datasets (%).

Hierarchical

Method Input Size Fru92 Fruits-360 FruitVeg-81 Grocery Store
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-l(Fru?Top-S

Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.
(Zhiz;ﬂeifl\a]if\g})lS) 224 x 224 51.76 81.26 99.95 99.99 98.71 99.92 53.22 84.86
(Sl\l}[uaffliliityvzz(;lzég 224 x 224 46.78 78.39 99.81 99.98 98.83 99.94 61.03 89.08
(Sanl\c/llloetileetNaelt?,VgOIB) 224 x 224 44.26 76.76 99.97 99.98 95.72 99.85 46.88 88.56
(HanG?tOZtllje;OZO) 224 x 224 50.13 77.15 99.92 99.98 97.40 99.85 44.48 83.57
(TanMgiLxE:’t_21019) 224 x 224 55.46 81.02 99.61 99.96 98.50 99.92 51.41 87.56
(TanMLXIE:f;OIQ) 224 x 224 51.83  77.39  99.49 99.95 98:08  99.83  46.77  85.04
MobileViTV1 256 X 256 58.38 84.01 99.94 99.99 98.08 99.89 57.25 86.10

(Mehta & Rastegari, 2021)
MobileViTv2-2.0
(Mehta & Rastegari, 2022)
FasterNet-t0
(Chen et al., 2023)
FasterNet-t1

256 x 256 68.48 88.22 99.98 100.00 98.92 99.92 57.81 88.76

224 x 224 63.17 88.11 99.98 100.00 98.82 99.89 56.80 89.50

(Chen et al., 2023) 224 x 224 64.80 88.30 99.98 100.00 98.88 99.83 58.92 88.57
CGViT-s1 224 x 224 64.83 88.07 99.99 100.00 98.54 99.90 58.33 89.58
CGViT-s2 224 x 224 71.26 90.43 99.99 100.00 98.92 99.97 61.33 87.56

FLOPs. Similarly, ShuffleNetV2’s(Ma et al., 2018) strong performance on
the FruitVeg-81 dataset(Waltner et al., 2017) can be attributed to its high
FLOPs. Despite its low parameter count and FLOPs, our method consis-
tently delivers strong results across the various datasets. Further experiments
will provide more precise comparisons regarding parameter counts.

As illustrated in Fig. 5, CGViT demonstrates superior convergence per-
formance during training, achieving significantly lower final loss values of 0.75
and 0.81 compared toother lightweight architectures. Furthermore, when an-
alyzed in conjuriction with the data presented in Table 6, it becomes evident
that CGViT ‘exhibits a substantial reduction in model parameters, thereby
reinforcing its advantage in terms of model compactness. The synergistic
combination of enhanced convergence characteristics and reduced parameter
count underscores the effectiveness of CGViT as an efficient architecture for
fruit and vegetable recognition tasks. These empirical results collectively
indicate that CGViT successfully establishes an optimal balance between
recognition accuracy and lightweight design, positioning it as an ideal de-
ployment solution for resource-constrained environments. The architectural
superiority of CGViT is particularly manifested in its ability to maintain
high performance while achieving remarkable efficiency, making it a com-
pelling choice for practical implementation scenarios where computational
resources are limited.
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MixNet-1+ 1.03m M— 03.93
ShuffleNetV1 1 1.03m e ©3.92
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§ MobileViTV1{ 0.958 —— 03.99
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1 2 3 4 ; 6 7
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Figure 5: Comparison of initial'and final training losses for lightweight networks

We calculated the parameter count and FLOPs for CGViT and compared
them with those of other networks listed in Table 6. To ensure consistency,
we standardized the settings across all experiments on the Fru92 dataset(Hou
et al., 2017), using a batch size of 256, 8 workers, and a single A800 (80GB)
GPU. The results in Table 6 show that our method has fewer parameters
and FLOPs compared to several other lightweight networks. Moreover, our
method requires less time to complete each epoch. Although GhostNet(Han
et al., 2020) also has low time consumption per epoch, its performance across
various datasets is subpar. This suggests that GhostNet(Han et al., 2020)
sacrifices a significant amount of performance for speed. Our method em-
ploys a linear dimension expansion module similar to GhostNet(Han et al.,
2020) but includes additional algorithms designed to enhance accuracy in
fruit and vegetable images recognition. Consequently, our method outper-
forms lightweight networks with similar parameter counts or FLOPs. The
higher accuracy achieved within the same training cycles can significantly
reduce training costs.
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Table 6: Comparison of parameters, Flops, Epoch, and accuracy in Fru92 with different
lightweight networks.

Method Param(M) FLOPs(C) eT;(ﬁlleegch () Memory(GB) X‘;‘C’fl(% )
(Zhii‘;fggit’\géls) 1.01 0.14 28 4.60 51.76
?&‘ﬁ‘?\;‘iﬂ% fé(; 5.54 9.03 60 70.90 46.78
(sanl\(/illc;?zN;t.,V;()ls) 2.34 0.31 11 11.50 44.26
(Hafzszl.\je;o%) 5.18 0.15 7 6.45 50.13
(TanM&icxgj’t'zlm ) 5.96 0.59 13 22.09 55.46
(Tay&izxgj’t';mg) 2.73 0.25 7 12.62 51.83
(Mehtygibfalae;ifg;ﬁ, 2021) 5.00 1.55 12 38.90 58.38
(Mehlt\iozllf{Z;g;‘giOQOﬂ) 17.52 5.63 18 46.96 68.48
( Chlz aft;ﬂ:ffggzg) 2.74 0.34 4 3.78 63.17
(Chf; Tteiﬂzf,t;ézs) 6.47 0.85 3 7.10 64.80
CGViT-sl 2.37 0.48 5 5.74 64.83
CGViT-s2 4.44 0.79 7 6.48 71.26

Additionally, we tested the memory usage of various models during train-
ing to determine their impact on GPU memory. The "Memory” column in
Table 6 provides the exact figures. We observed that our method uses a
maximum of only 6.48GB of memory, while most other models require sig-
nificantly more GPU memory. For instance, a larger lightweight model like
MobileViTV2(Mehta & Rastegari, 2022) requires almost 47GB. Among the
models with comparable GPU memory usage, our model has a significant ac-
curacy advantage. It is worth noting that ShuffleNetV2(Ma et al., 2018) also
demands a considerable amount of memory, which we attribute to its high
FLOPs. This further confirms that our method stands out for its efficiency
in memory usage.

Finally, we investigated the generalization capability of CGViT on different
datasets. Given that the Fru92 dataset(Hou et al., 2017) contains a wide vari-
ety of fruit and vegetable images with different appearances, including intact,
sliced and peeled images, and has a higher proportion of test images, CGViT
can benefit significantly from transferring to other datasets. We present the

22



Journal Pre-proof

Table 7: Performance of visual representations transferred from Fru92 to the other three
datasets (%).

Hierarchical Grocery
Store (Fru)
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Dataset Fruits-360 FruitVeg-81

Acc. Acc. Acc. Acc. Acc. Acc.
CGViT-s1 99.99 100.00 98.54 99.90 58.33 89.58
CGViT-s2 99.99 100.00 98.92 99.97 61.33 87.56
CGViT-sl-Fine tuned 99.99 100.00 99.26 99.85 61.32 84.27
CGViT-s2-Fine tuned 99.99 100.00 99.49 99.87 67.54 93.60

experimental results of CGViT on three datasets in Table 7. In these ex-
periments, CGViT denotes direct training on the respective dataset, while
CGVIiT + Fine-tuned indicates that CGViT was pre-trained on Fru92(Hou
et al., 2017) and then fine-tuned on the other three datasets for evaluation. As
shown in Table 7, the fine-tuned CGViT achieved better performance when
transferred to the three datasets, outperforming the results obtained from
direct training on the target datasets. Notably, the fine-tuned model demon-
strated more significant improvements on the FruitVeg-81(Waltner et al.,
2017) and Hierarchical Grocery Store(Fru)(Klasson et al., 2019) datasets,
with approximately a 1% increase on FruitVeg-81(Waltner et al., 2017) and
a 3% and 6% increase on Hierarchical Grocery Store(Fru)(Klasson et al.,
2019) for CGViT-sl and CGViT-s2, respectively. However, the fine-tuned
CGVIiT maintained a performance of 99.99% on the Fruits-360 dataset. This
is because the Fruits-360 dataset(Muresan & Oltean, 2018) contains simpler
images with plain white backgrounds and intact fruits without any slicing
or segmentation. Thus, CGViT shows no significant improvement on this
dataset.

4.3. Qualitative evaluation

We used Grad-CAM(Selvaraju et al., 2017) to perform a visual analysis
of CGVIT. First, we chose visually similar fruit images to check whether our
model could extract the most critical features. Then, we visualized a set
of fruit images with high variability to assess the model’s ability to identify
visual patterns.

First, we conducted experiments on multiple groups of visually similar
images from the Fru92 dataset(Hou et al., 2017), as illustrated in Fig. 6.
Our model can identify distinctive features in fruit images effectively. For
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93.5% 68.7% 77.2% 60.5%
Blueberry Grape Mandarin orange Dekopon

Figure 6: Attention visualization for similar images from Fru92.The probability in the
figure represents the probability of the image being classified as the specified category.

example, although blueberries and grapes appear siniilar, the tops of blueber-
ries are not as smooth and have unique characteristics that distinguish them
from grapes. Similarly, Mandarin oranges share a similar color and shape
with Dekopon; however, Dekopon has a small protrusion and a rougher sur-
face, setting it apart from mandarin oranges.

In Fig. 7, we present the visualization of various categories of fruits.
CGVIiT demonstrates its ability to extract visual patterns of figs, regardless
of their setting, whether in a bowl or on a tree. For kiwifruit, CGViT can
identify different visual patterns, whether it is the outer pattern when whole
or the inner pattern when sliced open. CGViT also performs exceptionally
well on fruits that undergo significant shape changes after being sliced. For
instance, starfruit, when sliced, has a star-like shape that contrasts with its
whole form; however, CGViT can accurately recognize it. Our method shows
stronger activation in target object regions, indicating that CGViT has an
enhanced capability to focus on more distinctive areas of fruit and vegetable
images compared to other approaches.

Lastly, we visualized different stages of CGViT, revealing attention re-
gions via backward propagation and showing only the positive gradient for a
specific category. Fig. 8 illustrates the following: (1) For each input image,
when the background is simple and clearly distinguishable from the target,
CGViT quickly differentiates between the background and the fruit, focusing
on extracting fruit-specific features in the later stages for classification. (2) In
cases with complex backgrounds where the background color closely resem-
bles the target color, CGViT shifts its focus to the target’s shape and contour,
allowing the model to concentrate on the target. Our method demonstrates
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Mangosteen Kiwi Fruit

Litchi

Avocado

Carambola

Figure 7: Results of the CGViT visualization experiment for different visual patterns
(Images from Fru92).The probability in the figure represents the probability of the image
being classified as the specified category.

a strong ability to understand various fruits, as the model can learn rich
feature information and aggregate it through the Transformer-based fusion.

(3) The Transformer-based fusion module in CGViT gathers more global
information, helping the model determine where attention should be focused.
In contrast, the Channel Grouping module focuses on extracting more dis-
tinctive features, providing the model with a robust foundation for fruit and
vegetable classification.

In each panel of Fig. 8, the left side presents images of four specific
categories of fruits or vegetables, while the right side displays the most com-
monly misclassified categories for each. From the figure, it can be observed
that even within the same type of fruit or vegetable, external factors such as
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Figure 8: Visualization experiments at different stages of CGViT. The probability in the
figure represents the probability of the image being classified as the specified category.
(The * in the upper right corner of ”Stage” indicates that Transformer-based Fusion is
applied in this stage)
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camera angle, lighting cenditions, and ripeness can cause their appearance
to resemble other categories. (1) Under certain lighting conditions, apples
and gandaria exhibit similar gloss and color. Causes apple to be identified
as gandaria or‘cherry. (2) As shown in the lower-left section of the figure,
the fruits are all orange-yellow in color. When images are captured at close
angles or-when size-related features are diminished, the model may struggle
to distinguish between them. (3) Due to variations in shooting height, many
fine details of the characteristics of fruits and vegetables may not be appar-
ent, making it difficult for the neural network to differentiate them, as shown
on the right side of the figure.

Although subtle distinguishable features, such as shape details or texture
variations, are still present in these images, the weight of these critical fea-
tures may be diminished when the overall similarity of the feature is high,
leading to classification errors. This phenomenon highlights the limitations of
the model when handling complex visual features, particularly in fine-grained
classification tasks.

26



Journal Pre-proof

3 3
& £
< &
] - |
g | - v '
£ z
2 -§} ‘ Raspberry
g g g 4
] |
4

Cherry Tomato Munlberry

Figure 9: Some images that CGViT recognizes incorrectly.

4.4. Discussions

In our study, CGViT emerges as a novel lightweight neural network, mak-
ing groundbreaking progress in.the field of fruit and vegetable recognition.
Through an extensive.evaluation of four datasets, CGViT demonstrated
outstanding performance. » This innovation not only advances research in
lightweight deep learning networks, but also achieves higher efficiency and
accuracy on resouree-constrained end devices compared to existing studies.
This aligns with the findings of Yang et al. (2023) and Escamilla et al.
(2024), whoemphasised the critical role of real-time recognition technologies
in improving automation and quality inspection efficiency within the food
industry. “Our work not only contributes to the theoretical advancement of
this field, but also has significant practical value for real-world applications.

The success of CGViT lies in its innovative integration of channel group-
ing mechanisms with Transformer architectures in the domain of fruit and
vegetable recognition. This enables CGViT to effectively extract diverse
features from fruit and vegetable images while maintaining its lightweight
nature. Not only does this approach enhance the recognition capability of
CGVIiT, but it also reduces the number of parameters and computational
complexity. Our findings suggest that CGViT has significant potential for
practical applications such as automated harvesting, quality inspection, and
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food processing, particularly in resource-constrained environments.

Future research could explore multi-scale feature extraction and fusion,
insights from large models, and the integration of multimodal information
to further enhance the performance of fruit and vegetable images recogni-
tion. Multi-scale feature extraction and fusion can capture subtle yet critical
texture and shape variations in fruit and vegetable images, aiding in the
differentiation of the same fruit type at different stages of maturity. The
large models also offer inspiration for the recognition of lightweight fruit and
vegetable images, such as transferring knowledge from.large models through
distillation techniques, incorporating efficient attention mechanisms, or em-
ploying multimedia learning strategies that combineimage features with se-
mantic information to improve accuracy and robustness. Moreover, integrat-
ing multimodal information (e.g. semantic data) can address the limitations
of visual features, providing promising solutions to implement fruit and veg-
etable recognition models on resource-constrained devices.

5. Conclusions

In this work, We present a novel lightweight network model for fruit and
vegetable recognition, termed CGViT. By leveraging the distinctive charac-
teristics of fruit and vegetable images, CGViT incorporates a channel group-
ing mechanism to reduce parameter and computational complexity of method
while extracting multi-level features. Additionally, the model employs half-
convolution to further streamline its architecture while preserving robust fea-
ture extraction capabilities. The Transformer-based fusion module enhances
the capacity of CGViT to aggregate global information. Extensive experi-
mental results demonstrate that CGViT surpasses all other state-of-the-art
lightweight benchmark models across four widely used fruit and vegetable
datasets. As an efficient and effective lightweight solution, CGViT exhibits
high accuracy and efficiency in visual-based fruit and vegetable recognition,
positioning it as a viable option for deployment on resource-constrained edge
devices and facilitating more efficient training in server-side environments.

ORCID Information

Chengxu Liu Orcid: 0009-0003-2874-436X e-mail: chengxuliu@m.ldu.edu.cn
Weiqing Min: orcid: 0000-0001-6668-9208 e-mail: minweiqing@ict.ac.cn Jin-
gru Song: orcid: 0009-0006-6637-2212 e-mail: songjingru@m.ldu.edu.cn Yan-
cun Yang: orcid: 0000-0003-0785-6007 e-mail: Harryyang@ldu.edu.cn Guorui

28



Journal Pre-proof

Sheng(Corresponding author) Orcid:  0000-0001-6790-0239 e-mail: sheng-
guorui@ldu.eud.cn Tao Yao: orcid: 0000-0003-2660-1050 e-mail: yaotao@ldu.edu.cn
Lili Wang: orcid: 0000-0002-1025-3955 e-mail: wanglili@ldu.edu.cn Shugiang
Jiang orcid: 0000-0002-1596-4326 e-mail: sqjiang@ict.ac.cn

CRediT author statement

Chengxu Liu: Methodology, Software, Validation, Writing - Original
Draft Weiqing Min: Conceptualization, Writing - Review & Editing Jingru
Song: Writing - Review & Editing Yancun Yang: Software, Data Curation
Guorui Sheng: Writing - Review & Editing Tao Yao: Resources Lili Wang:
Project administration Shuqiang Jiang: Supervision

Declaration of interests

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

References

Aleixos, N., Blasco, J., Navarron, F., & Moltd, E. (2002). Multispectral in-
spection of citrus in real-time using machine vision and digital signal pro-
cessors. Computers and electronics in agriculture, 33, 121-137. https://
www.sciencedirect.com/science/article/pii/S0168169902000029.

Bai, Y., Mao, S., Zhou, J., & Zhang, B. (2023). Clustered tomato detection
and picking point location using machine learning-aided image analysis for
automatic robotic harvesting. Precision Agriculture, 24, 727-743. https:
//1ink.springer.com/article/10.1007/s11119-022-09972-6.

Chen, J., Kao, S.-h., He, H., Zhuo, W., Wen, S., Lee, C.-H., & Chan,
S-H. G. (2023). Run, don’t walk: chasing higher flops for faster neural
networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (pp. 12021-12031). http://openaccess.thecvf.
com/content/CVPR2023/html/Chen_Run_Dont_Walk_Chasing Higher_
FLOPS_for_Faster_Neural_Networks_CVPR_2023_paper.html.

29



Journal Pre-proof

Dhanush, G., Khatri, N., Kumar, S., & Shukla, P. K. (2023). A compre-
hensive review of machine vision systems and artificial intelligence algo-
rithms for the detection and harvesting of agricultural produce. Scien-
tific African, (p. e01798). https://www.sciencedirect.com/science/
article/pii/S2468227623002545.

Escamilla, L. D. V., Géomez-Espinosa, A., Cabello, J. A. E., & Cantoral-
Ceballos, J. A. (2024). Maturity recognition and fruit counting for
sweet peppers in greenhouses using deep learning neural networks.
Agriculture, 14, 331. https://search.proquest.com/openview/
7518£19f99ceddf99d7c2bc6£d662645/17pg-origsite=gscholar&cbl=
2032441.

Faria, F. A., dos Santos, J. A., Rocha, A., & Torres, R. d. S. (2021). Au-
tomatic classifier fusion for produce recognition. In 2012 25th SIBGRAPI
Conference on Graphics, Patterns and Images (pp. 252-259). IEEE.
https://ieeexplore.ieee.org/abstract/document/6382764/.

Feng, J., Zeng, L., & He, L. (2019). Apple fruit recognition algorithm based
on multi-spectral dynamic image analysis. Sensors, 19, 949. https://
www.mdpi.com/1424-8220/19/4/949.

Gaikwad, S., & Tidke, S. (2022). Multi-spectral imaging for fruits and
vegetables.  International Journal of Advanced Computer Science and
Applications, 13, 743-760. https://www.academia.edu/download/
83941681/Paper._87-Multi_Spectral_Imaging for_Fruits_and_
Vegetables.pdf.

Gill, H. S., Khalaf, O. I., Alotaibi, Y., Alghamdi, S., & Alassery,
Fo (2022).  Multi-model cnn-rnn-Istm based fruit recognition and
classification. Intelligent  Automation & Soft Computing, 33.
https://cdn.techscience.cn/ueditor/files/iasc/TSP_IASC-33-1/
TSP_IASC_22589/TSP_IASC_22589.pdf.

Gupta, S., & Tripathi, A. K. (2024). Fruit and vegetable disease detection
and classification: Recent trends, challenges, and future opportunities.
Engineering Applications of Artificial Intelligence, 133, 108260. https://
www.sciencedirect.com/science/article/pii/S0952197624004184.

30



Journal Pre-proof

Gupta, S., Tripathi, A. K., & Lewis, N. (2025). Pre-trained noise based
unsupervised gan for fruit disease classification in imbalanced datasets.
Pattern Analysis and Applications, 28, 39.

Gupta, S., Tripathi, A. K., & Pandey, A. C. (2024). Potcapsnet: an explain-
able pyramid dilated capsule network for visualization of blight diseases.
Neural Computing and Applications, 36, 23251-23274.

Hameed, K., Chai, D., & Rassau, A. (2020). A sample weight and adaboost
cnn-based coarse to fine classification of fruit and vegetables at a super-
market self-checkout. Applied Sciences, 10, 8667. https://www.mdpi.
com/2076-3417/10/23/8667.

Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). Ghostnet:
More features from cheap operations. In Proceedings of the IEEE/CVF
conference on computer wvision and. pattern recognition (pp. 1580—
1589). http://openaccess.thecvf.com/content_CVPR_2020/html/
Han_GhostNet_More_Features_From_Cheap_Operations_CVPR_2020_
paper.html.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of the IEEE
conference on computer wvision and pattern recognition (pp. T70-
778). http://openaccess.thecvf.com/content_cvpr_2016/html/He_
Deep_Residual _Learning CVPR_2016_paper.html.

He, M., Li, C.; Cai, Z., Qi, H., Zhou, L., & Zhang, C. (2024). Leafy veg-
etable freshness identification using hyperspectral imaging with deep learn-
ing approaches. Infrared Physics & Technology, 138, 105216. https://
www.sciencedirect.com/science/article/pii/S1350449524001002.

Hou, S., Feng, Y., & Wang, Z. (2017). Vegfru: A domain-specific dataset for
fine-grained visual categorization. In Proceedings of the IEEE international
conference on computer vision (pp. 541-549). IEEE.

Howard, A. G. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiw:1704.04861, . https:
//arxiv.org/abs/1704.04861.

31



Journal Pre-proof

Klasson, M., Zhang, C., & Kjellstrom, H. (2019). A hierarchical grocery
store image dataset with visual and semantic labels. In 2019 IEEE win-
ter conference on applications of computer vision (WACV) (pp. 491-500).
IEEE. https://ieeexplore.ieee.org/abstract/document/8658240/.

Lee, J., Nazki, H., Baek, J., Hong, Y., & Lee, M. (2020). Artificial intelligence
approach for tomato detection and mass estimation in precision agricul-
ture. Sustainability, 12, 9138. https://www.mdpi.com/2071-1050/12/
21/9138.

Li, K., Wang, J., Jalil, H., & Wang, H. (2023). A fast and lightweight
detection algorithm for passion fruit pests based on improved yolovh.
Computers and FElectronics in Agriculture, 204, 107534. https://www.
sciencedirect.com/science/article/pii/50168169922008420.

Li, X., Liu, Y., Gao, Z., Xie, Y., & Wang, H. (2021). Computer vision online
measurement of shiitake mushroom (lentinus edodes) surface wrinkling and
shrinkage during hot air drying with humidity control. Journal of Food
Engineering, 292, 110253. https://www.sciencedirect.com/science/
article/pii/S0260877420303447.

Ma, N., Zhang, X., Zheng, H.-T. & Sun, J. (2018). Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In Pro-
ceedings of the European conference on computer vision (ECCV) (pp.
116-131). http://openaccess.thecvf.com/content_ECCV_2018/html/
Ningning Light-weight CNN_Architecture_ECCV_2018_paper.html.

Mehta, S., & Rastegari, M. (2021). Mobilevit: light-weight, general-purpose,
and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178,
. https://arxiv.org/abs/2110.02178.

Mehta, 3., & Rastegari, M. (2022). Separable self-attention for mobile vision
transformers. arXiv preprint arXiw:2206.02680, . https://arxiv.org/
abs/2206.02680.

Min, W., Jiang, S., Liu, L., Rui, Y., & Jain, R. (2019). A survey on food
computing. ACM Computing Surveys (CSUR), 52, 1-36. https://dl.
acm.org/doi/abs/10.1145/3329168.

Min, W., Wang, Z., Yang, J., Liu, C., & Jiang, S. (2023). Vision-based fruit
recognition via multi-scale attention cnn. Computers and Electronics in

32



Journal Pre-proof

Agriculture, 210, 107911. https://www.sciencedirect.com/science/
article/pii/S0168169923002995.

Mputu, H. S., Abdel-Mawgood, A., Shimada, A., & Sayed, M. S. (2024).
Tomato quality classification based on transfer learning feature extrac-
tion and machine learning algorithm classifiers. IEFEE Access, . https:
//ieeexplore.ieee.org/abstract/document/10388315/.

Muresan, H., & Oltean, M. (2018). Fruit recognition from images using deep
learning. Acta Universitatis Sapientiae, Informatica, 10, 26-42. https:
//intapi.sciendo.com/pdf/10.2478/ausi-2018-0002.

Nguyen, H. H. C., Luong, A. T., Trinh, T. H., Ho, P. H., Meesad, P., &
Nguyen, T. T. (2021). Intelligent fruit recognition system using deep learn-
ing. In International Conference on Computing and Information Technol-
ogy (pp. 13-22). Springer. https://link.springer.com/chapter/10.
1007/978-3-030-79757-7_2.

Nyalala, 1., Okinda, C., Nyalala, L., Makange, N., Chao, Q., Chao, L.,
Yousaf, K., & Chen, K. (2019). Tomato volume and mass estima-
tion using computer vision and machine learning algorithms: Cherry
tomato model. Journal of Food Engineering, 263, 288—298. https://wuw.
sciencedirect.com/science/article/pii/S0260877419302973.

Pan, H., Xie, R., & He, Q. (2024). Fruit detection and recog-

nition with “deep learning. In  Fourth  International Con-
ference  on Computer  Vision and Data  Mining (ICCVDM
2023) (pp.  5H62-565). SPIE  volume 13063. https://www.

spiedigitallibrary.org/conference-proceedings-of-spie/13063/
130632C/Fruit-detection-and-recognition-with-deep-learning/
10.1117/12.3021359. short.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation
in pytorch, . https://openreview.net/forum?id=BJJsrmfCZ.

Rachmawati, E., Supriana, I., Khodra, M. L., & Firdaus, F. (2022).
Integrating semantic features in fruit recognition based on perceptual
color and semantic template. Information Processing in Agriculture,

33



Journal Pre-proof

9, 316-334. https://www.sciencedirect.com/science/article/pii/
52214317321000214.

Rehman, T. U.; Mahmud, M. S., Chang, Y. K., Jin, J., & Shin, J. (2019).
Current and future applications of statistical machine learning algorithms
for agricultural machine vision systems. Computers and electronics in
agriculture, 156, 585-605. https://www.sciencedirect.com/science/
article/pii/S0168169918304289.

Saikumar, A., Nickhil, C., & Badwaik, L. S. (2023). Physicochemical
characterization of elephant apple (dillenia indica 1.) fruit and its mass
and volume modeling using computer vision. = Scientia Horticulturae,
314, 111947. https://www.sciencedirect.com/science/article/pii/
S5030442382300122X.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 4510—
4520). http://openaccess.thecvf.com/content_cvpr_2018/html/
Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh,
D., & Batra, D. (2017). Grad-cam:  Visual explanations from
deep mnetworks via gradient-based localization. In  Proceedings
of the IEEFE “international conference on computer wision (pp.
618-626). http://openaccess.thecvf.com/content_iccv_2017/html/
Selvaraju.Grad-CAM_Visual_Explanations_ICCV_2017_paper.html.

Siddique; M. A. L., & Srizon, A. Y. (2023). An effective dimensionality re-
duetion workflow for the enhancement of automated date fruit recognition
utilizing several machine learning classifiers. In International Conference
on Big Data, IoT and Machine Learning (pp. 363-378). Springer. https:
//1link.springer.com/chapter/10.1007/978-981-99-8937-9_25.

Sun, Q., Chai, X., Zeng, Z., Zhou, G., & Sun, T. (2021). Multi-level feature
fusion for fruit bearing branch keypoint detection. Computers and Elec-
tronics in Agriculture, 191, 106479. https://www.sciencedirect.com/
science/article/pii/S0168169921004968.

34



Journal Pre-proof

Tan, M., & Le, Q. V. (2019). Mixconv: Mixed depthwise convolutional ker-
nels. arXiw preprint arXiw:1907.09595, . https://arxiv.org/abs/1907.
09595.

Taner, A., Mengstu, M. T., Selvi, K. C., Duran, H., Giir, I., & Ungureanu,
N. (2024). Apple varieties classification using deep features and machine
learning. Agriculture, 14, 252. https://www.mdpi.com/2077-0472/14/
2/252.

Waltner, G., Schwarz, M., Ladstéatter, S., Weber, A., Luley, P., Lindschinger,
M., Schmid, I., Scheitz, W., Bischof, H., & Paletta, L. (2017). Personal-
ized dietary self-management using mobile vision-based assistance. In New
Trends in Image Analysis and Processing—ICIAP 2017: ICIAP Interna-
tional Workshops, WBICV, SSPandBE, 3AS5, RGBD, NIVAR, IWBAAS,
and MADiMa 2017, Catania, Italy, September 11-15, 2017, Revised Se-
lected Papers 19 (pp. 385-393). Springer. https://link.springer.com/
chapter/10.1007/978-3-319-70742-6_36.

Wang, Y., Li, L., Liu, Y., Cui, Q. Ning, J., & Zhang, Z. (2021). Enhanced
quality monitoring during black tea processing by the fusion of nirs and
computer vision. Journal of Food Engineering, 304, 110599. https://
www.sciencedirect.com/science/article/pii/S0260877421001242.

Xu, M., Wang, J., & Gu, S. (2019). Rapid identification of tea quality by e-
nose and computer vision combining with a synergetic data fusion strategy.
Journal of Food Fngineering, 241, 10-17. https://www.sciencedirect.
com/science/article/pii/S0260877418303091.

Xu, P., Fang, N., Liu, N., Lin, F., Yang, S., & Ning, J. (2022). Vi-
sual recognition of cherry tomatoes in plant factory based on improved
deep instance segmentation. Computers and FElectronics in Agriculture,
197,106991. https://www.sciencedirect.com/science/article/pii/
S50168169922003088.

Yang, Y., Han, Y., Li, S., Yang, Y., Zhang, M., & Li, H. (2023). Vision
based fruit recognition and positioning technology for harvesting robots.
Computers and FElectronics in Agriculture, 213, 108258. https://www.
sciencedirect.com/science/article/pii/S0168169923006464.

35



Journal Pre-proof

Yogesh, Dubey, A. K., Ratan, R., & Rocha, A. (2020). Computer vision
based analysis and detection of defects in fruits causes due to nutrients
deficiency. Cluster Computing, 23, 1817-1826. https://link.springer.
com/article/10.1007/s10586-019-03029-6.

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(pp. 6848-6856). http://openaccess.thecvf.com/content_cvpr_2018/
html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html.

Zhu, Y., Gu, Q., Zhao, Y., Wan, H., Wang, R., Zhang, X., & Cheng, Y.
(2022). Quantitative extraction and evaluation of tomato fruit phenotypes
based on image recognition. Frontiers in Plant Science, 13, 859290. https:
//www.frontiersin.org/articles/10.3389/fpls.2022.859290/full.

Ziaratban, A., Azadbakht, M., & Ghasemnezhad, A. (2017). Modeling of
volume and surface area of apple from their geometric characteristics and
artificial neural network. International Journal of Food Properties, 20,
762-768. https://www.tandfonline.com/doi/abs/10.1080/10942912.
2016.1180533.

36



