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Abstract

Recently, considerable research efforts have been

devoted to food recognition for its great potential

applications in human health. Much work so far has

focused on directly extracted deep visual features via

Convolutional Neural Networks, which require signifi-

cant computational resources and training time. The

high requirements on hardware resources severely limit

the application of food recognition in mobile devices

and the sustainable extension on the server side.

Therefore, how to design an efficient and high‐
performance lightweight neural network for food

recognition is the key to solve the problem. In this

paper, we propose a Lightweight Transformer‐Based
Deep Neural Network for food image recognition, which

can achieve effective recognition of food images with

fewer parameters and lower computational cost.

Through Transformer Grouping and Token Shuffling,

we construct an efficient food image recognition

network that effectively combines the advantages of

Transformer to extract global features and MobileNet to

extract local features. The proposed network architec-

ture effectively copes with the particularly scattered

distribution of salient features in food images, and

improves the recognition rate. We conduct extensive

experiments on three popular food data sets, demon-

strating that our method achieves state‐of‐the‐art
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performance in applying lightweight neural networks to

food image recognition.

KEYWORD S

deep learning, food recognition, lightweight, mobilenet,
transformer

1 | INTRODUCTION

In the field of computer vision and multimedia, food computing1 has received more and more
attention in recent years. The importance of analyzing and understanding food images from
different perspectives is obvious, such as nutrition estimation,2 food choices,3,4 food diaries,5

healthy eating recommendations,6–8 and the cafeteria.9 Food recognition is an important
fundamental step in gaining a deeper understanding of food.

As a recognition task, the key to food recognition is to extract discriminative visual features.
Early research on food recognition was mainly about handcrafted features.10–12 Recently, food
image recognition is moving towards the use of deep learning as a general solution due to its
powerful discriminative feature learning capability. For example, Meyers et al.5 used the
GoogLeNet network to train a multilabel classifier to predict the type of food present in a meal.
Martinel et al.13 proposed a wide slice residual network to capture the vertical structure of food
images. Deep learning‐based methods usually achieve better performance than handcrafted
features because of their advantages in representation learning. While these deep learning models
perform well on the food recognition task they are trained on, they may not be effective enough for
direct deployment in the real world. Practitioners of deep learning‐based food recognition may face
some challenges when training or deploying models, which stem from three aspects:

• Widely distributed subtle discriminative details in food images: There are widely distributed
subtle discriminative details in food images, which are more difficult to capture in many
cases, resulting in food image recognition being a fine‐grained recognition. For example, as
shown in Figure 1, the food fried rice, which is very common in China, has a variety of food
ingredients, seasonings, and cooking methods due to different regions. So the final image of
fried rice also shows weak distinguishing features and a very scattered layout. Therefore, in
many cases, the discriminative details are too subtle and scattered to be well represented by
existing Convolutional Neural Networks (CNNs). Effective global feature extraction is
particularly important for food images. The recently popular attention mechanism is
expected to play a role in effectively recognizing food images.

• Enabling on‐device deployment: Most food recognition applications, such as visual food
diary,5 health‐aware recommendation,2,14 and cafeterias,9 need to run in real‐time on
Internet of Things (IoT) and smart devices, where model inference happens directly on the
device. One of the reasons is that food consumption is closely related to mass life and
happens every day. Therefore, most of these consumption activities take place on convenient
portable devices so it becomes imperative to optimize the model for the target device. To the
best of our knowledge, there is no research work in this area so far.

• Sustainability extension on the server side: Training and deploying large deep learning models are
very resource‐intensive. Although training may be a one‐time consumption, deployment and long‐
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running inference can still become expensive in terms of consumption of server‐side RAM, CPU,
and so forth. With the global carbon reduction trends, the carbon footprint of a data center is very
concerning. For example, famous organizations, like, Google, Facebook, Amazon, and so forth
spend several billion dollars each per year in capital expenditure on their data centers. To achieve
green and sustainable artificial intelligence (AI), we should propose building efficient neural
architectures that can achieve the same level of accuracy while reducing carbon footprint by orders
of magnitude. As for food culture in the world, there are so many types and shapes of food which
directly leads to a large number of food images. Effective training of such a large and growing
collection of food images places very high demands on hardware resources. Under the trend of
carbon emission reduction, we should design a more efficient neural network for food image
recognition.

Taking these factors into consideration, we propose a Lightweight Transformer‐Based Deep
Neural Network (LTBDNN) for food recognition, which is capable of achieving efficient
classification of food images with fewer parameters. This framework mainly consists of two
components, namely, MobileNet Part (MP) and Transformer Part (TP). MP takes the image as
input and stacks MobileNet blocks, it extracts local features at pixel level by leveraging the
efficient depthwise and pointwise convolution. TP takes six learnable tokens as input and
stacks multihead attention (MHA) and feed‐forward networks (FFNs). Global features of the
food image are got from these tokens.

In view of the importance of global features for recognizing food images, we have carried
out several targeted designs for the TP: (1) The way of Token Generation. We use the original
image to be convolved and then unfolded as the input tokens of the TP. This strategy can enable

FIGURE 1 Some samples from food data set, with widely distributed subtle discriminative details [Color
figure can be viewed at wileyonlinelibrary.com]
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LTBDNN to learn global representations with spatial inductive bias. (2) The generated tokens
are grouped and used as the input of Transformer Grouping. This strategy can effectively
extract the global features of food images. (3) The features learned by each transformer group
are shuffled before entering the next block so that the global features are further fused and the
recognition rate is more effectively improved.

In each MobileNet–Transformer block, the global features extracted by the TP are fused
with the local features extracted by the MP and finally used for food image recognition. During
the fusion process, we use lightweight cross attention to model this bidirectional bridge by
performing the cross attention at the bottleneck of MP where the number of channels is low,
and removing projections W W W( , , )Q K V from MP where the number of positions is large, but
keeping them at TP. This strategy ensures that the model has a smaller number of parameters
and lower computational consumption.

The final experimental results show that our method can extract more comprehensive and
extensive global features for food images, and further fuse with the local features extracted by
MobileNet, resulting in a very good recognition effect.

To evaluate our method, we conduct extensive experiments on three popular food data sets:
ETH Food‐101,11 Vireo‐Food 172,15 and ISIA Food‐500.16 Our method achieves solid
performance on these data sets.

The contributions of our paper can be summarized as follows:

• We introduce a new LTBDNN for food recognition, which can achieve an efficient classification
of food images with fewer parameters and computational costs. To the best of our knowledge, we
are the first research work to apply lightweight neural networks to food image recognition.

• We propose a wide‐range attention mechanism based on Transformer Grouping and Token
Shuffling, which can effectively deal with the very scattered key features of food images.

• We conduct an extensive evaluation of our proposed method to verify the effectiveness of our
approach. As one strong baseline, code and models will also be released upon publication to
support future research.

2 | RELATED WORK

Food recognition: Image recognition17–21 is one of the most active directions in the field of AI
recently, and the recognition of food images belongs to the more difficult fine‐grained recognition.
Traditional food image recognition consists of two steps: (1) food image feature extraction and (2)
classification model training. Among them, image feature extraction and selection is the key to food
image recognition. Features here mainly refer to handcrafted features, ranging from simple
features, such as color, texture, shape, edge, and spatial relationship to Scale Invariant Feature
Transform (SIFT),22 histograms of oriented gradient,23 and so forth. For example, Yang et al.10 first
use a semantic texton forest to calculate the component distribution of each pixel in an image, and
then builds multidimensional histogram features as visual representations. Bettadapura et al.12

combined different types of feature descriptors such as the original SIFT22 and its variants into
fused features for food recognition. Some works24,25 use multikernel learning to fuse various types
of image features such as SIFT, Gabor texture, and color histogram for food image recognition.

CNN can learn image features layer by layer: Its bottom layer is general features, such as
image edges, textures, and so forth; high‐level features are a combination of low‐level features,
which are specific features for specific tasks.26–30 Due to the powerful expressive ability of CNN,
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it was soon also applied to the field of food image recognition.31,32 Some work extract features
directly on pretrained networks, for example, Ming et al.33 used the ResNet network to directly
extract visual features for food image recognition. Some works fine‐tune the existing deep
networks on food image data sets, for example, the earliest work that applied deep learning
network to dish image recognition34 extracted image features by fine‐tuning the AlexNet
network; some works redesign deep neural networks for food image recognition tasks, Martinel
et al.13 proposed a WISeR network for food images with specific vertical structures (such as
hamburger, pizza, cake, etc.), recognition is performed by fusing visual features from the Wide
Residual Networks35 and the proposed Slice Network in the paper.

Different from the existing methods that mainly focus on the improvement of the
recognition rate and ignore the size and efficiency of the model, our work aims to achieve a
more efficient and lightweight implementation on food recognition.

Lightweight deep neural network: Deep neural networks have achieved the highest precision in
various tasks at the expense of many parameters, requiring significant computational resources and
training time. Thus there is a huge demand for model compression and acceleration techniques
before deploying to resource‐constrained devices and real‐time applications. In recent years, a
growing number of methods have been presented for compressing and accelerating the network
while making the slightest compromise with the model accuracy. Most approaches can be classified
into the following categories: parameter pruning, network quantization, low‐rank factorization,
model distillation, and compact network design.

SqueezeNet36 extensively uses 1 × 1 convolutions with squeeze and expand modules
primarily focusing on reducing the number of parameters. More recent works shifts the focus
from reducing parameters to reducing the number of operations (MAdds) and the actual
measured latency. MobileNet V137 employs depthwise separable convolution to substantially
improve computation efficiency. MobileNet V238 expands on this by introducing a resource‐
efficient block with inverted residuals and linear bottlenecks. ShuffleNet39 utilizes group
convolution and channel shuffle operations to further reduce the MAdds.

Recently, Vision Transformer (ViT)40 demonstrates the advantage of global processing and
achieves significant performance boost over CNNs. ViT divides an image into a sequence of
nonoverlapping patches and then learns interpatch representations using multiheaded self‐
attention in transformers.41 The general trend is to increase the number of parameters in ViT
networks to improve performance.42–44 However, these performance improvements come at the
cost of model size (network parameters) and latency. Many real‐world applications require
visual recognition tasks (e.g., food recognition) to run on resource‐constrained mobile devices
in a timely fashion. To be effective, ViT models for such tasks should be lightweight and fast.

Chen et al.45 propose a new network that parallelizes MobileNet and Transformer with a
two‐way bridge in between, named Mobile‐Former. The bridge and Former consumes less than
20% of the total computational cost, but significantly improve the representation capability.
Mehta et al.46 introduce MobileViT, a lightweight and general‐purpose ViT for mobile devices.
MobileViT presents a different perspective for the global processing of information with
transformers, that is, transformers as convolutions. The author claimed that MobileViT
significantly outperforms CNN‐ and ViT‐based networks across different tasks and data sets.

Our work is much inspired by the recent work,45 in that we are both devoted to create a ViT‐
based lightweight neural network. However, we have significant differences in three‐fold. (1)
Motivation: We aim to create an efficient neural network for ViT‐based food image recognition,
while Chen et al.45 attempt to find a general‐purpose parallel design of MobileNet and Transformer.
(2)Methodology: Chen et al.45 introduce a Mobile‐Former structure which contains very few tokens
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that are randomly initialized, we take into consideration learning global representations with spatial
inductive bias. To this end, we unfold input image into nonoverlapping flattened pathces result in
not losing the patch order nor the spatial order of pixels within each patch. In addition, for the
weak and scattered features of food images, we use Transformer Grouping method to make
Transformer obtain broader and more global features. Further, we use the Token Shuffling strategy
to fully communicate the global features learned by two Transformer group to further adapt to the
characteristics of food images and achieve higher classification accuracy. We use three classic data
sets of food images for classification comparison, confirming that our method achieves state‐of‐the‐
art results in classical lightweight neural networks including.45

3 | METHOD

In this section, we will introduce the proposed LTBDNN for food recognition. Figure 2
illustrates the architecture of LTBDNN.

The same as Mobile‐Former,45 LTBDNN has two branches, one of which is based on Transformer
for extracting global features of food images, and the other is based on MobileNet for extracting local
features. Global features and local features are fused in each Transformer‐MobileNet block. Different
with Mobile‐Former,45 LTBDNN performs Token Generation, Transformer Grouping, and Token
Shuffling, to make the method more effective in food image recognition: In the process of global
feature extraction, the convolution and unfold operations are sequentially applied to the original
image to generate six tokens as input of TP. This Token Generation method enables LTBDNN to
learn global representations with spatial inductive bias and helps it obtain global features better. In
the TP, Transformer Grouping is used for multichannel simultaneous feature extraction, and the
Token Shuffling is used to make the extracted multichannel features fully communicated. These two
operations further improve the effect and efficiency of TP to extract global features. The following will
introduce the details of the three steps Token Generation, Transformer Grouping, and Token
Shuffling that play a decisive role in improving the performance of food image recognition, as well as
the details of the information exchange between MP and TP.

3.1 | Token Generation

Different from the randomly initialized tokens in Mobile‐Former, our method obtains the input
tokens of TP by first applying the convolution operation to the original image, and then

FIGURE 2 Overview of proposed Lightweight Transformer‐based Deep Neural Network for food
recognition [Color figure can be viewed at wileyonlinelibrary.com]
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applying the unfold operation to the obtained feature map. This Token Generation method
enables LTBDNN to learn global representations with spatial inductive bias, which means
neither the patch order nor the spatial order of pixels within each patch is lost in the generated
tokens.

As shown in Figure 3, after performing a convolution operation on the input image
∈X( )H W

0
× ×3 , its corresponding feature map is generated, denoted as ∈X RH W c

token
× × , where

c, W , and H correspond to the number of channels, width, and height of the feature map,
respectively. Then unfold the two dimensions ofW and H of the generated feature map Xtoken
to generate the tokens required for the transformer operation, denoted as ∈Z RM d× , where d
and M are the dimensions and number of tokens, respectively. To obtain comprehensive global
information for the TP, we specify the correspondence between the feature image and the
token, one channel of the feature map corresponds to one token, namely,

∈

 






unfold X X X X

Z unfold X Z R

( ) :

= ( ), .

H W c H W c d c

M d

token token
× ×

token
( × )×

token
×

token
×

(1)

It should be noted that to match the correspondence mentioned above, it should be
satisfied: M c= , here we set M c= = 6.

3.2 | Transformer Grouping

After generating the tokens, we divide them into two groups and pass them into two
Transformers for training.

As shown in Figure 4, the MobileNet block and Transformer block in the network are
connected through a two‐way bridge whose direction is determined by the flow direction of
the feature information. We define the bridge that flows from the MobileNet block to the
Transformer block as MobileNet Transformer, which flows from the Transformer block to
the direction of the two‐way bridge. The bridge of the MobileNet block is Transformer
MobileNet. We use a lightweight cross attention to model this bidirectional bridge by
performing the cross attention at the bottleneck of MobileNet where the number of channels is
low, and removing projections W W W( , , )Q K V from MobileNet side where the number of
positions is large, but keeping them at Transformer side. At the MobileNet Transformer
stage, we divide the feature map output from the MobileNet block to the Transformer block
equally according to the channel dimension and perform cross‐attention on each group of

FIGURE 3 Proposed Token Generation process [Color figure can be viewed at wileyonlinelibrary.com]
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tokens in the two Transformer blocks, respectively. We define the output of the MobileNet
block as Xi, where i represents the ith layer, xi

c represents the ith channel of the feature map
output by the cth layer, and ZG

i represents the ith layer token of the Gth group Transformer:

∈
















( )Z Z Attention Z W x x W

c
C

= + ( ) , , ,

0,
2
,

i h
h
Q

i
c

i
c

h H

o
1
hidden

1 1 1
=1:

(2)

∈
















( )Z Z Attention Z W x x W

c
C

= + ( ) , , ,

0,
2
.

i h
h
Q

i
c

i
c

h H

o
2
hidden

2 2 2
=1:

(3)

Among them, W( )h
Q

1 represents the query matrix of the hth head part in the first group of
Transformers, Wo is used to combine the MHA results, C represents the total number of
channels of the feature map, and Attention Q K V( , , ) is the standard attention equation, query
Q, key K , and value V follow:







Attention Q K V softmax

QK

d
V( , , ) = .

T

k
(4)

Here the K andV come from the feature map Xi obtained from the MobileNet block, andQ
comes from the token in the Transformer block.

Similar to the previous part, in the TransformerMobileNet module, the information of
the Transformer block flows to the MobileNet block through a two‐way bridge. Here we do not
calculate the Attention twice but combine the tokens obtained by the two groups of
Transformers in dimension. After that, the transmission of information is completed after an
attention operation:







( )X X Attention X Z W Z W= + , , ,i i h h h

K
h h

V

h H=1:
(5)

whereWh
K andWh

V represent the projection matrix of Key andValue. The feature map obtained
by the MobileNet block Xi is as the Query, the token in the Transformer block is used as Key
and Value, respectively.

FIGURE 4 Proposed Transformer Grouping structure, where we also show Token Shuffling
implementation. FFN, feed‐forward network. [Color figure can be viewed at wileyonlinelibrary.com]
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During the bidirectional bridge operation, the result of MobileNet Transformer is used as
the input of the Transformer block, and the input of the MobileNet is generated by
TransformerMobileNet block. To reduce the calculation amount of the model, three
parametersWQ,WK , andWV are only used in the TP, that is, the above three parameters only
generate dot multiplication with the tokens but not with the feature map matrix.

The reason why the Transformer Grouping strategy is adopted is based on the
characteristics of food images: common object recognition generally has a single global
feature, while food images often have multiregional quasi‐global features with little difference
in recognition. The parallel structure of two transformers is conducive to extracting food image
features from different perspectives at the same time, while the number of two transformers is a
compromise between accuracy and model scale. Through Transformer Grouping, the model
can learn the global features of food images more comprehensive, and make targeted
improvements to the scattered and large range of food image features. The subsequent
experimental results prove this.

3.3 | Token Shuffling

The correspondence between feature images and tokens is mentioned in Section 3.1, each
token stores the global feature in each channel. Considering that the key features of food
images are very scattered, let the information between the two groups of Transformers fully
communicate by making the tokens shuffled in the Transformer, so that the two sets of
Transformers take into account the different dimensional features of the input image during
the optimization process. Use ZG

n to represent each token, where G represents the group to
which the token belongs, and n represents the token number:



( ) ( )
( ) ( )

Z Z Z Z Z Z Z Z

replace Z Z Z Z Z Z Z Z Z Z

= , = ,

( , ) = , = .

1 1
1

1
2

1
3

2 2
1

2
2

2
3

1 2 1 1
1

2
2

1
3

2 2
1

1
2

2
3

(6)

It should be noted that the Token Shuffling operation occurs after MobileNet Trans-
former, and before Zi participates in the MHA calculation of the Transformer block, as shown
in Figure 4.

The Token Shuffling here comes from the exchange of tokens from the two sets of
transformers, which can achieve the purpose of fully communicating the global features
obtained by the two transformers. The reason for only shuffle one token from each group is to
effectively control the amount of computation on the TP side.

3.4 | Information flow between MP and TP

In the MobileNet block, the input is the output feature map ∈X Ri
L C× by the previous layer of

network, where C is the number of channels and L represents its spatial feature (L hw= ,
where h and w are height and width of the feature map). In the Transformer block, the grouped
global tokens are used as the input for each Transformer: ∈ ∈∕ ∕Z R Z R,i M d i M d

1
( 2)×

2
( 2)× ,

where M represents the total number of tokens in the Transformer block, and d represents the
dimension of the tokens. The output of the MobileNet block is the input required by the next
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layer of network, and its L and C are determined by the convolution and pooling operation of
the current layer. The two sets of outputs generated by the two Transformers are spliced by
dimension and used as the output of the entire Transformer block, after completing the
Attention operation, the output needs to be further grouped and shuffled as the input of the
next layer of Transformer blocks. In particular, for the first layer of Transformer block, its input
is formed by unfolding the spatial dimension L of the feature map obtained after the original
image is convolved by one layer (the number of convolution kernels is equal to M).

4 | EXPERIMENT

4.1 | Data set

Three data sets are selected to evaluate our method, namely, ETH Food‐101,11 VireoFood‐172,15

and ISIA Food‐500.16 The number of categories and images of the data sets increased in turn to
verify the robustness of our model.

ETH Food‐101 contains 101,000 images that belong to 101 food categories. There are 750
training images and 250 testing images for each category.

VireoFood‐172 contains 110,241 food images from 172 categories. Similar to ETH food‐101,
in each food category, 60%, 10%, and 30% of images are randomly selected for training,
validation, and testing, respectively.

ISIA Food‐500 contains 500 categories from the list in Wikipedia, altogether 399,726
images. It is a large‐scale ontology of food images and a more comprehensive food
data set that surpasses existing popular benchmark data sets by category coverage and data
volume.

4.2 | Experimental setup

Our model is implemented on the Pytorch platform. The images are resized to 224× 224.
The model is optimized using the stochastic gradient descent with a batch size of 100
and momentum of 0.9, weight decay of 10−5. The learning rate is initially set to 10−3 and
divided by 100 every 200 epochs. Top‐1 accuracy and Top‐5 accuracy are used as evaluation
metrics.

4.3 | Experiment on food image data set

We evaluated LTBDNN against existing benchmark lightweight deep neural networks on three
food image data sets mentioned above. We conduct experiments using LTBDNN generated
from tokens of two different dimensions. Among them, 150 dimensional‐token (denoted as
TD‐150) represents a smaller token, which makes the network parameters less, and 192
dimensional‐token (denoted as TD‐192) represents a higher dimension, which makes the
network parameters slightly higher but can get better results.

Table 1 shows the performance comparison of LTBDNN and baseline lightweight network
on three data sets. It can be seen from the experimental results on ETH Food‐101 in Table 1
that (1) Our method exceeds all baseline methods. Compared with the recently published
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lightweight network GhostNet, our method outperforms by 5 and 4 percentage points in Top‐1
and Top‐5 accuracy, respectively. (2) Our method outperforms the Transformer‐based
lightweight network Mobile‐Former45 by about 3.5 and 3.2 percentage points in Top‐1 and
Top‐5 accuracy, respectively. Although marginal performance improvement, our method did
not use additional data augmentation strategy, like, WISeR, which additionally applied various
photometric distortions and AlexNet‐style color augmentation.

Table 1 also shows the performance comparison of LTBDNN and baseline lightweight network
on VireoFood‐172 data set. The total number of images in the data set VireoFood‐172 is basically the
same as that of ETH Food‐101, but the categories are increased by 71, which will bring greater
challenges to the model ‐ ‐ how to maintain good performance with fewer trainable images.

We first compare LTBDNN with the baseline lightweight neural network on VireoFood‐
172. As shown in Table 1, we can see that LTBDNN achieves the state‐of‐the‐art
performance in both Top‐1 accuracy and Top‐5 accuracy. Compared with the best
performing baseline lightweight network MobileNet V3, the accuracy of LTBDNN achieves
significantly higher Top‐1 accuracy (78.83% vs. 75.33%) and Top‐5 accuracy (93.58% vs.
91.03%). Table 1 also shows that LTBDNN exceeds the Transformer‐based lightweight
network Mobile‐Former, there is a performance improvement of about 3% and 1.5% in
Top‐1 and Top‐5 accuracy, respectively.

Table 1 shows the performance of LTBDNN on ISIA Food‐500. It can be seen that the
experimental results of classic lightweight networks on this database are relatively low,
which is attributed to the three major characteristics of this database: (1) Larger data volume:
It has 399,726 images from 500 food categories. (2) Larger category coverage: It consists of 500
categories, which is about 3–5 times that of existing data sets, such as Food‐101 and Vireo
Food‐172. (3) Higher diversity: Food categories from this data set covers various countries
and regions including both eastern and western cuisines. As shown in Table 1, compared
with other models, LTBDNN performs well. The reason is that LTBDNN can efficiently
combine the global features and local features of food images, so it can make a more
effective identification of the characteristics of Western dishes and the characteristics of
Chinese food.

TABLE 1 Performance comparison on three popular food image data sets

ETH Food‐101 VireoFood‐172 ISIA‐Food 500

Model #Params. (M)
Top‐1
(%)

Top‐5
(%)

Top‐1
(%)

Top‐5
(%)

Top‐1
(%)

Top‐5
(%)

MobileNet V3(large)47 4.20 71.63 90.24 75.33 91.03 41.10 70.00

ShuffleNet V139 1.16 63.56 84.92 67.81 87.27 37.38 65.28

ShuffleNet V2(×2.0)48 5.87 71.50 89.83 72.78 89.06 19.18 42.94

GhostNet49 4.03 69.57 88.27 72.08 89.01 45.51 73.86

Mobile‐Former‐29445 10.10 71.42 89.41 75.82 92.03 48.15 75.92

LTBDNN(TD‐150) 10.08 73.81 90.26 79.18 92.42 50.28 78.23

LTBDNN(TD‐192) 12.23 76.83 92.50 78.82 93.58 49.83 77.31

Note: Bold indicates the best experimental results.

Abbreviation: LTBDNN; Lightweight Transformer‐Based Deep Neural Network.
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4.4 | Comparison among efficient CNNs and Mobile‐Former

In terms of accuracy and number of parameters trade‐offs, the comparisons are performed on
the three food image data sets mentioned above. Table 1 shows the comparison between
LTBDNN and classic efficient CNNs: (a) ShuffleNetV1,39 V248 and (b) MobileNet V1,37 V347

and (c) GhostNet49 and (d) Mobile‐Former.45 The comparison covers a number of parameters
that range from 1.16M to 12.23M. Compared with the latest efficient CNN GhostNet, although
LTBDNN has a higher number of parameters (12.23M vs. 4.03M), LTBDNN achieves
significantly higher Top‐1 accuracy (76.83% vs. 69.57%). This demonstrates that our design
improves the representation capability efficiently for food images.

Because LTBDNN adopts Transformer, it has more parameters than efficient CNN, but
because of its stronger global feature expression ability, the recognition effect is much higher
than that of efficient CNN. In the case of the rapid development of the hardware level,
compared with the huge improvement brought by the performance, we believe that a moderate
increase in the amount of parameters is acceptable.

Compared with Mobile‐Former, the Top‐1 accuracy of LTBDNN on ETH Food‐101 is 2.4
percentage points higher with almost the same amount of parameters, and the accuracy is 5.4
percentage points higher with 2Mmore parameters. This significant performance improvement
will greatly facilitate the deployment of LTBDNN on IoT devices.

4.5 | Ablation and discussion

In this section, we show LTBDNN is effective via several ablations performed on three data sets
classification. Here, Mobile‐Former‐294M45 is used and all models are trained for 300 epochs.

LTBDNN is more effective in food image recognition than Mobile‐Former as it performs Token
Generation, Transformer Grouping, and Token Shuffling while encodes global interaction via
Transformer efficiently, resulting in more accurate prediction. As shown in Table 2, the three steps
each show their important roles in improving the accuracy of food image recognition. Taking the
experimental results on ETH food‐101 as an example, adding Token Generation gains 1.5% Top‐1
accuracy over the baseline that uses Mobile‐Former alone. This validates our Token Generation
design in LTBDNN, it can enable LTBDNN to learn global representations with spatial inductive bias.
In addition, another ablation on the step of Transformer Grouping, shows that after adopting this
step, the Top‐1 recognition accuracy was further improved by 0.9 percentage points. Finally, the
Token Shuffling step further improves the final Top‐1 accuracy by 3.7 percentage points to 76.83%.
The final two‐step performance improvement validates our Transformer Grouping and Token
Shuffling designs in LTBDNN, which can enable LTBDNN to learn the global features of food images
more efficiently and accurately, thereby greatly improving recognition accuracy.

4.6 | Qualitative analysis and visualization

In this section, we will visualize why LTBDNN can achieve better performance in food image
recognition.

Figure 5 shows the comparison of attention span for images containing regular objects and
food dishes. It can be found that the key features used for class distinction are very obvious and
concentrated in the images containing regular objects, so the attention mechanism needs to pay
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attention to a very small range. For food images, it can be found that the key features used to
distinguish categories are very scattered, making it difficult to determine the category of food
with a small range of attention. To deal with this situation, it is necessary to further expand the
scope of attention and make it more precise.

On the basis of the fact that our method achieves a substantial improvement in the
recognition rate of food images compared to the Mobile‐Former method, we focus on analyzing
this kind of food image: wrongly recognized in the Mobile‐Former method, but correct in the
LTBDNN method. Figure 6 shows the superiority of our proposed method. The four sets of
example images are separated by black dashed lines, and the leftmost column of each set of
images is the original food image, correctly identified in LTBDNN but misidentified by Mobile‐
Former. The middle column of each set of images is the attention heatmap generated by
Mobile‐Former method recognition, and the rightmost column of each set of images is the
attention heatmap generated by LTBDNN.

TABLE 2 Ablation of Token Generation, Transformer Grouping, and Token Shuffling evaluated on three
popular food image data sets

Model
ETH
Food‐101

Virio
Food‐172

ISIA
Food‐500

Mobile‐
Former

Token
Generation

Transformer
Grouping

Token
Shuffling

Top‐1
(%)

Top‐5
(%)

Top‐1
(%)

Top‐5
(%)

Top‐1
(%)

Top‐5
(%)

 – – – 71.42 89.41 75.82 92.03 48.15 75.92

  – – 72.90 90.22 76.64 92.32 48.24 75.41

   – 73.18 90.51 76.86 92.90 48.87 76.34

    76.83 94.62 78.82 93.58 49.83 77.31

Note: Bold indicates the best experimental results.

FIGURE 5 Attention distribution of general images and food images. (A, B) General images and its
attention distribution and (C, D) food images and its attention distribution. [Color figure can be viewed at
wileyonlinelibrary.com]
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Through the heat map, it can be found that LTBDNN can effectively expand the attention
range and more accurately locate the key features of food images, thereby effectively improving
the recognition accuracy.

5 | CONCLUSIONS AND FUTURE WORKS

In this paper, we present an LTBDNN for food category prediction. It is capable of achieving
efficient classification of food images with fewer parameters and computational cost by
combining global features and local features efficiently. Especially for global features, our
method uses Transformer Grouping and Token Shuffling to achieve an expanded attention
span to better adapt to the characteristics of food images. Extensive evaluation on three
benchmark data sets has verified its effectiveness.

Future work includes: (1) Further optimizing the deep neural network architecture based on
the bidirectional bridge structure to achieve a more efficient fusion of local features and global
features with a lower number of parameters and less computational consumption, and further
improve the recognition accuracy of food images. (2) Continue to work on the efficient fusion of
the global features extracted by the transformer and the local features extracted by the lightweight
network to achieve higher recognition accuracy of food images. (3) Researching the application of
lightweight neural networks to food image recognition, and further combine ingredient and recipe
information to obtain personal health advice and analysis of eating habits. In the reality that
people's daily life is highly dependent on mobile phones, research in this direction has great
practical significance.

DATA AVAILABILITY STATEMENT
Data openly available in a public repository that issues data sets with DOIs.

ORCID
Guorui Sheng http://orcid.org/0000-0001-6790-0239
Yancun Yang http://orcid.org/0000-0003-0785-6007

FIGURE 6 Attention span is further expanded and precise by LTBDNN. For each of the four sets of images,
the left column is the original food image, the middle is the attention heatmap generated by Mobile‐Former, and
the right column is the attention heatmap generated by LTBDNN. LTBDNN; Lightweight Transformer‐Based
Deep Neural Network. [Color figure can be viewed at wileyonlinelibrary.com]
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