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Abstract: Food-image recognition plays a pivotal role in intelligent nutrition management, and
lightweight recognition methods based on deep learning are crucial for enabling mobile deployment.
This capability empowers individuals to effectively manage their daily diet and nutrition using
devices such as smartphones. In this study, we propose an Efficient Hybrid Food Recognition Net
(EHFR–Net), a novel neural network that integrates Convolutional Neural Networks (CNN) and
Vision Transformer (ViT). We find that in the context of food-image recognition tasks, while ViT
demonstrates superiority in extracting global information, its approach of disregarding the initial
spatial information hampers its efficacy. Therefore, we designed a ViT method termed Location-
Preserving Vision Transformer (LP–ViT), which retains positional information during the global
information extraction process. To ensure the lightweight nature of the model, we employ an inverted
residual block on the CNN side to extract local features. Global and local features are seamlessly
integrated by directly summing and concatenating the outputs from the convolutional and ViT struc-
tures, resulting in the creation of a unified Hybrid Block (HBlock) in a coherent manner. Moreover,
we optimize the hierarchical layout of EHFR–Net to accommodate the unique characteristics of
HBlock, effectively reducing the model size. Our extensive experiments on three well-known food
image-recognition datasets demonstrate the superiority of our approach. For instance, on the ETHZ
Food–101 dataset, our method achieves an outstanding recognition accuracy of 90.7%, which is 3.5%
higher than the state-of-the-art ViT-based lightweight network MobileViTv2 (87.2%), which has an
equivalent number of parameters and calculations.

Keywords: food recognition; lightweight; global feature; ViT; nutrition management

1. Introduction

Food computing has gained increased attention in the fields of food and nutrition [1].
This is due to its potential to contribute to improvements in diet, health, and the food
industry [2–5]. For example, by analyzing factors such as the meal type, components,
and other distinctive information, one can evaluate the nutritional value of a meal and
understand individual dietary habits. This not only ensures the person’s health but also
aids in illness prevention [6]. Food-image recognition is of utmost importance to these
application scenarios [7–9] Since the ultimate objective of the food computing system is to
aid individuals in the management of their diet and health, as well as to enhance their daily
activities, it becomes imperative to establish an efficient system specifically designed for
the identification of food images on end devices, such as mobile phones [10]. In addition,
the wide range of foods and cooking techniques has led to a rapid expansion of images
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of food, which has raised the expectation of a long-term expansion of image recognition
on the server side. Lastly, the recognition of food images belongs to the more complex
recognition of fine-grained objects [11], and the lightweight effort in this area will provide
the same reference for fine-grained recognition models. However, current state-of-the-
art techniques [12,13], predominantly leveraging deep-learning-based solutions, which
entail a substantial number of parameters and involve an extensive process of training and
evaluation. In light of this, this paper concentrates on the lightweight nature of deep neural
network models for food image recognition.

At present, scant research has been undertaken on lightweight food-image recognition.
Lightweight Convolutional Neural Network (CNN) was initially employed for food-image
identification [10,14–16]. The primary challenge is that the traditional convolutional model
is not capable of extracting long-range information from food images due to the dispersed
arrangement of components. To gather more long-range features, a deeper CNN network is
necessary, thus preventing the achievement of a lightweight model. As Figure 1 highlights,
food images exhibit the characteristics of small inter-category differences and large intra-
category differences. Key features in these images often rely on ingredient information
scattered throughout the image. Moreover, the same component in the same dish can
display different characteristics in terms of size, form, and dispersion based on the means
of cooking, such as the two braised pork images in Figure 1. Hence, it is imperative
to precisely capture the global features that represent distant correlations between these
disparate food ingredients in order to identify the dish effectively. Vision Transformer (ViT)
is adept at capturing global information and utilizes an attention strategy to identify aspects
from various locations that are dependent on the input data. Unfortunately, this necessitates
considerable computational expenses, and the training can be arduous. CNN focuses on
modeling local relationships and has strong prior inductive biases. Sheng [17] tried to
combine the local feature extraction ability of CNN and the global feature expression ability
of ViT, but the parameters and calculation amount of the model are still quite large.
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Figure 1. Examples from ETHZ Food–101 and Vireo Food–172. The first row of samples shows that
food images have the characteristics of large intra-class differences; the second row of samples shows
that food images have the characteristics of small inter-class differences.

Therefore, the challenges of lightweight food-image recognition derive two-fold:
(1) Due to the fine-grained characteristics and widespread, dispersed distribution of in-
gredients in food images, the extraction of global features becomes crucial for effective
food-image recognition. CNN is good at perceiving local features and needs to build a
highly complex network to obtain global features. This will elicit a sharp rise in the number
of parameters and computations, which is incongruous with the demands of a lightweight
network. (2) ViT proves to be an efficient way of acquiring features that reflect long-range
pixel correlations. Unfortunately, the large number of token interactions necessitates a
considerable amount of vector dot product calculations, as well as a larger pool of training
data and iterations in order to obtain the global correlations. Therefore, to obtain efficient
training on the server side and fast inferencing on the terminal like mobile phones while
ensuring recognition accuracy, it is an urgent problem to be solved.
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Our work has successfully tackled the key issues in lightweight food recognition, in-
cluding the limited global information representation capacity of CNN and the complexity
and difficulty of training the ViT model. We use LP–ViT to efficiently capture the global
features in food images and form a skip connection-based series block (named HBlock)
with the lightweight CNN-based module inverted residual block. HBlock is used as the
basic structure of EHFR–Net, which effectively improves food-image recognition accuracy.
Furthermore, based on the fact that LP–ViT focuses on extracting global features in the
front part of EHFR–Net, we drastically reduce the number of network layers in the middle
and rear parts to reduce the number of parameters and computations. We conduct compre-
hensive experiments on several major datasets in the food-image field. The results show
that compared with existing CNN-based, ViT-based, and hybrid lightweight networks, in
the case of equal or fewer parameters and FLOPs, our method has certain advantages in
recognition accuracy.

We summarize our contributions as follows:

• A ViT module LP–ViT (Location-Preserving Vision Transformer) Block that effectively
extracts global features of food images is designed and implemented. LP–ViT directly
obtains the correlation between all pixels while maintaining the original spatial struc-
ture of the image through a series of reversible operations, thereby achieving more
efficient fusion with the local features extracted by CNN.

• The HBlock (Hybrid Block) based on the series structure of LP–ViT block and CNN
is designed and used as the backbone to establish a neural network Efficient Hybrid
Food Recognition Net (EHFR–Net) that effectively recognizes food images.

• In view of the characteristics of the LP–ViT block, which starts to extract global features
at the shallow layer of the network, an adapted neural network hierarchical layout
structure is designed to effectively reduce the number of parameters and calculations
and further achieve lightweight.

• We conduct extensive experiments on three open-source food image recognition
datasets. Results demonstrate the effectiveness of our method, surpassing state-of-the-
art CNN-based, ViT-based, and hybrid lightweight models with simple training recipes.

2. Related Works
2.1. Lightweight CNNs, ViTs, and Hybrid Models

ResNet [18] is one of the most renowned CNN architectures. Nevertheless, the
most efficacious CNN models typically require a high number of parameters and FLOPs.
Lightweight CNNs that achieve competitive performance with a reduced number of pa-
rameters and FLOPs comprise ShuffleNetv2 [19], ESPNetV2 [20], EfficientNet [21], Mo-
bileNetV2 [22], and V3 [23]. MobileNetV3 [23] is the most current implementation of a
set of models tailored for situations with limited resources, like mobile devices. The basic
blocks of MobileNetV3 [23] include the MobileNetV2 [22] block and the Squeeze-and-Excite
network [24]. The common complication of CNN-based lightweight architectures is their
deficiency of capacity to extract global features.

For the purpose of rapidly obtaining global information, ViT [25] brings transformer
models tailored to natural language processing tasks to the vision domain, particularly
image recognition. The incorporation of ViT into machine vision has piqued scholarly
interest in its potential for lightweightness. A majority of efforts are being channeled
towards perfecting the self-attention procedure to enhance productivity, e.g., SwinT [26], Ef-
ficientFormer [27], LightViT [28], EfficientViT [29], MiniViT [30], and TinyViT [31]. Training
difficulties and the exorbitant computational expense resulting from the quadratic number
of interactions between tokens are common predicaments of ViT-based lightweight models.

Recently, researchers have endeavored to assemble compact hybrid systems that inte-
grate CNN and ViT for mobile vision tasks, which indicates that amalgamating convolution
and transformer yields enhancement in prediction precision, as well as training dependabil-
ity. Subsequently, there have been a large number of lightweight works on these models,
such as MobileFormer [32], CMT [33], CvT [34], BoTNet [35], Next–ViT [36], EdgeViTs [37],



Nutrients 2024, 16, 200 4 of 16

MobileViTv1 [38], and MobileViTv2 [39]. The hybrid lightweight model structuring CNN
and ViT has realized an impressive combination of global and local information, although
the issue of a voluminous model remains.

2.2. Lightweight Food Recognition

Recently, Min et al. [1] delivered a comprehensive study on food computing, which
encompassed food recognition. In the initial stages, many manually crafted features are
utilized for recognition [40,41]. For instance, Lukas et al. [41] applied random forests to
extract distinctive image patches as a visual representation. With the growth of deep-
learning technology, numerous recognition methods based on deep learning have been
developed [12,13,42–46].

Due to the necessity of lightweight food-image recognition, a lot of related research
work has been proposed. Early researchers used the lightweight CNN method for food-
image recognition [10,14–16]. Tan et al. [16] recently proposed a novel lightweight Neural
Architecture Search (LNAS) model to self-generate a thin CNN that can be executed on
mobile devices, achieving nearly 76% recognition accuracy on the ETHZ Food–101 dataset.
The efficacy of these CNN-based lightweight food-recognition models is not especially
high. ViT presents a new method for obtaining global information on food images, Sheng
et al. [17] tried to extract global and local features with a parallel structure composed of
the ViT group and CNN, and it obtained the SOTA performance. However, due to the
Multi-Head Attention mechanism of the ViT, the model size is still large.

3. Materials and Methods
3.1. Datasets and Training Settings

In order to assess the proposed model, we conduct experiments on three food datasets:
ETHZ Food–101 [41], Vireo Food–172 [47], and UEC Food256 [48]. ETHZ Food–101 is the
first large-scale Western cuisine image dataset, comprising 101 classes of Western dishes
with a total of 101,000 image. We used 75,750 images for training and 25,250 for validation.
Vireo Food–172, released in 2016, is the first relatively large-scale dataset of Chinese cuisine,
featuring 172 classes and a total of 110,241 food images. We used 66,071 images for training
and 44,170 images to validate. UEC Food256 exclusively comprises Japanese dishes, with a
total of 25,088 images spanning across 256 food categories. Among them, 22,095 images
were allocated for training and 9300 for validation.

We train our models using an input image resolution 256× 256, a batch size of 32,
and AdamW [49] optimizer. We linearly increase the learning rate from 10−6 for the first
20 k iterations, and then a cosine schedule with a learning rate ranging from 0.0002 to
0.002. Furthermore, we use the same data augmentation method as MobileViTv2 [39] for
image preprocessing.

3.2. Overview of EHFR–Net

EHFR–Net is a hybrid neural network based on CNN and ViT. Since a significant
feature of food images is that different dishes may have the same ingredients, this will
lead to the inability to obtain accurate results when using local features as the main
discriminant factor for food-image recognition. Therefore, effective extraction of global
features is particularly important in food-image recognition. Since ViT has more prominent
global feature extraction capabilities than CNN, a natural idea is to effectively combine
convolution and ViT: use convolution to extract local features and ViT to obtain global
features to improve the model’s expression ability in food image recognition tasks. Unlike
other hybrid networks that combine CNN and ViT, we designed a LP–ViT Block that
can retain the original spatial information of the image while calculating the correlation
between all pixels. This structure is more effective in dealing with food images and is
more lightweight.

Figure 2a is the overall architecture diagram of EHFR–Net and its main parts. Figure 2b
shows that HBlock is implemented by CNN and LP–ViT block in series, and the local
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features and global features are effectively integrated into HBlock. Figure 2c illustrates
the implementation method of LP–ViT. After unfolding the input, it traverses the parallel
separate self-attention module and patch attention module. Subsequently, it proceeds
through an FFN layer and finally reinstates the position information through the fold
operation. Figure 2d shows the implementation of the transposition operation in the patch
attention module and the extraction of full-pixel-related features inside patches. Figure 2e
shows the image processing process of HBlock.
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Figure 2. The overall architecture of EHFR–Net. (a) The backbone of EHFR–Net. It is composed
of concatenated HBlocks. (b) The architecture of HBlock. L1 and L2 denote the number of blocks.
HBblock comprises Inverted Residual Blocks capable of extracting local features and LP–ViT Blocks
efficient in extracting global information. The local features and global features are further fused
through skip connections. (c) The architecture of LP–ViT Block. It utilizes the unfold operation
to expand pixel points into a sequence. These sequences are then separately fed into the left and
right branches of the attention structure to compute the correlations between pixel points within
patches and between patches. Subsequently, global information is obtained, and finally, the fold
operation is applied to restore the sequence back to the image shape, achieving a local-preserving
effect. (d) The architecture of Patch Attention. Computes the correlations between pixel points within
patches through a combination of transpose and attention operations. (e) Image-processing process
of HBlock. Initially, the image undergoes local feature extraction through the Inverted Residual Block,
simultaneously considering downsampling operations. The obtained feature map is then fed into the
LP–ViT Block, where two branches independently calculate the correlations between pixels within
patches and between patches. These correlations are later fused to acquire global information.

3.3. LP–ViT

The traditional vision transformer needs to convert the input into a token sequence
through the embedding layer and then calculate the correlation. The embedding layer
compresses all the pixels in a patch into one pixel through convolution and then unfolds
it into a sequence through a flattening operation. However, since the irreversibility of
the embedding operation will destroy the original spatial information of the image itself,
positional encoding is needed to generate separate location information for each token,
as shown in Figure 3. LP–ViT replaces the embedding layer and positional encoding in
traditional ViT with the help of unfold and fold operations, so that the image transformed
into a sequence can be restored back to the image. This greatly retains the original spatial
information of the image and is more conducive to the recognition of food images. In



Nutrients 2024, 16, 200 6 of 16

addition, we use separate self-attention in LP–ViT, which is more lightweight and has a
smaller latency than Multi-Head Attention.
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Figure 3. Initial processing of traditional ViT. The input is converted into a token sequence through
the embedding layer and then the correlation is calculated. Positional encoding is required to generate
separate position information for each token. This is because the embedding operation is irreversible
and destroys the original spatial information of the image itself.

The specific processing is shown in Figure 4. The input is first unfolded to form a
sequence of pixels at the same position in each patch, as shown in Figure 4a, and then sent to
the left branch of the parallel structure in Figure 2c to calculate the correlation. At the same
time, the generated sequence is sent to the patch attention of the right branch to calculate
the correlation of pixels within the patch. In patch attention, as depicted in Figure 4b, the
sequence obtained by unfolding is utilized to arrange the pixels inside the patch into a
sequence via the transpose operation. Subsequently, the correlation is calculated through
the attention structure to obtain the output, which is then restored through transpose. The
outputs from the left branch and the right branch are fused by addition and sent to FFN to
obtain the output. After that, the sequence is restored back to the image arrangement form
through fold operation. After processing by the LP–ViT module, the correlation between
all pixels in the image is obtained, as shown in Figure 4c. In this way, in the food-image
recognition task, the global features can be locked more quickly and accurately, and the
model expression effect is better.
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position in each patch; (b) Arrange the pixels inside the patch into a sequence through the transpose
operation; (c) LP–ViT extracts more comprehensive global features.

The following takes a batch as an example to introduce the detailed processing process
of LP–ViT. The patch size is 2× 2, and the input is a matrix:x1

11 . . . x1
1w

...
. . .

...
x1

h1 · · · x1
hw

 · · ·
xc

11 . . . xc
1w

...
. . .

...
xc

h1 · · · xc
hw

 ∈ R1×C×H×W (1)



Nutrients 2024, 16, 200 7 of 16

Input X is obtained through unfolding and reshaping operations:

x1
11 · · · x1

1w
...

. . .
...

x1
h1 · · · x1

hw

 · · ·
xc

11 · · · xc
1w

...
. . .

...
xc

h1 · · · xc
hw

 Unfold→


X1

2m−1,2n−1 · · · XC
2m−1,2n−1

X1
2m−1,2n XC

2m−1,2n
X1

2m,2n−1 XC
2m,2n−1

X1
2m,2n · · · XC

2m,2n


Reshape→


X1

2m−1,2n−1
X1

2m−1,2n
X1

2m,2n−1
X1

2m,2n

 · · ·


XC
2m−1,2n−1
XC

2m−1,2n
XC

2m,2n−1
XC

2m,2n

 = X

(2)

where XC
2m−1,2n−1 represents xc

ij with odd row and column coordinates in the C− th channel,

XC
2m−1,2n represents xc

ij with odd row coordinates and even column coordinates in the C− th
channel, XC

2m,2n−1 represents xc
ij with even row coordinates and odd column coordinates

in the XC
2m,2n represents xc

ij with even row and column coordinates in the C− th channel.

X ∈ R1×C×P×N , P = 2× 2, N = H×W
P .

Then, X enters the left branch to perform the separate self-attention operation:

Y1 =
{
∑ (σ(XWI) ∗ XWK) ∗ ReLU(XWV)

}
WO (3)

where WI ∈ RN×1, WK ∈ RN×N , WV ∈ RN×N , WO ∈ RN×N , Y1 ∈ R1×C×P×N , σ means
Softmax activation function, ∗ and ∑ are broadcastable element-wise multiplication and
summation operations, respectively. Perform patch attention in the right branch:

Y2 =
{[

∑
(

σ
(

XTW ′I
)
∗ XTW ′K

)
∗ ReLU(XTW ′V)

]
W ′O
}T

(4)

where W ′I ∈ RP×1, W ′K ∈ RP×P, W ′V ∈ RP×P, W ′O ∈ RP×P,Y2 ∈ R1×C×P×N . Add the results
from the two branches and perform the FFN operation to obtain the output Y:

Y = W2[W1(Y1 + Y2) + B1] + B2 (5)

where W1 ∈ R1×2C×H×W , W2 ∈ R1×C×H×W , B1 ∈ R1×2C×H×W , B2 ∈ R1×C×H×W ,
Y ∈ R1×C×P×N . Finally, Y obtains the output through the fold operation. The fold operation
is essentially the reverse process of the unfold operation:

Output =

y1
11 . . . y1

1w
...

. . .
...

y1
h1 · · · y1

hw

 · · ·
yc

11 . . . yc
1w

...
. . .

...
yc

h1 · · · yc
hw

 ∈ R1×C×H×W (6)

3.4. HBlock and Overall Network Architecture
3.4.1. HBlock

HBlock is composed of a combination of convolution and ViT, which serves as the
basic module that constitutes the backbone of the entire EHFR–Net model. Among them,
the convolution part uses the Inverted Residual Block proposed in MobileNetV2, and the
ViT part uses the LP–ViT module proposed in this article. In HBlock, the convolution
extracts local features of food images, and LP–ViT encodes global information on the local
features extracted by the convolution so that the correlation information among all pixels
in the feature map can be extracted. Then, local features are fused with global information
through skip connection. The design method of HBlock can enable the model to quickly
lock the characteristics of the ingredients in the picture and the global characteristics of the
food image, improving the accuracy of the model.
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3.4.2. Overall Structure of EHFR–Net

In order to make the model more lightweight while ensuring accuracy, we redesigned
a new network hierarchical layout that is different from the traditional network structure.
This is mainly based on the following considerations: First, since food-image recognition is
a fine-grained image recognition task, and convolution can extract fine-grained features of
the image in the shallow network, we increased the number of Inverted Residual Blocks in
the shallow network. Second, traditional convolutional networks better extract the global
information of the image by increasing the number of modules in the deep network, while
the basic module HBlock of EHFR–Net is composed of a combination of convolution and
ViT, allowing the model to start extracting global features in the shallow network. Therefore,
we reduce the number of Inverted Residual Blocks in the deep network. Third, although
the shallow network of EHFR–Net focuses more on the extraction of fine-grained features,
the existence of LP–ViT also extracts some global information. On the other side, both
convolution operations and LP–ViT in deep networks can extract global information, so
global information is acquired throughout the entire network. In response to this feature, we
use fewer LP–ViT blocks in the shallow and deep layers of the entire network structure and
relatively more in the middle layer. Based on the above three adjustments to the network
structure, our model is more lightweight, more suitable for food-image recognition tasks,
and it has stronger model-expression capabilities. The specific network structure is shown
in Table 1.

Table 1. Network specification. Exp Ratio: Expansion Ratio in MobileNetV2 [22] block; α ∈ 0.5, 2.0:
width multiplier to create models at different complexities of EHFR–Net.

Component Input Operator Exp Ratio Patch Size Output
Channel Stride

Head 256× 256 Conv2D 3× 3 - - 32α 2

Block Group 1
128× 128 Inverted Residual 1 - 32α 2
128× 128 Inverted Residual 1 - 32α 1
128× 128 LP-ViT - 2× 2 32α -

Block Group 2

128× 128 Inverted Residual 1 - 64α 2
64× 64 Inverted Residual 1 - 64α 1
64× 64 Inverted Residual 3 - 64α 1
64× 64 LP-ViT - 2× 2 64α -
64× 64 LP-ViT - 2× 2 64α -

Block Group 3

64× 64 Inverted Residual 3 - 96α 2
32× 32 Inverted Residual 3 - 96α 1
32× 32 Inverted Residual 3 - 96α 1
32× 32 LP-ViT - 2× 2 96α -
32× 32 LP-ViT - 2× 2 96α -
32× 32 LP-ViT - 2× 2 96α -

Block Group 4

32× 32 Inverted Residual 6 - 160α 2
16× 16 Inverted Residual 2.5 - 160α 1
16× 16 Inverted Residual 2.5 - 160α 1
16× 16 LP-ViT - 2× 2 160α -
16× 16 LP-ViT - 2× 2 160α -

Block Group 5 16× 16 Inverted Residual 6 - 320α 2
8× 8 LP-ViT - 2× 2 320α -

4. Results
4.1. Results on ETHZ Food–101

Results from ETHZ Food–101 are displayed in Table 2. The results have been divided
into groups based on a similar set of parameters. Our model is better than all others
in six parameter ranges. Among all models with less than 1 M parameters, our model
achieves 89.4% top-1 accuracy, which is 15% higher than ShuffleNet V2 [19]. Although it
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incurs higher computational costs, the recognition accuracy has significantly improved.
Due to the rapid development of end-device hardware in today’s context, the compu-
tational power required for this level of processing is entirely acceptable. Among all
models with 1 M–2 M parameters, our model achieves 90.4% top-1 accuracy, which is 9.2%,
5.2%, and 3.5% higher than GhostNetV2 [50], MobileNetV3 [23], MobileViTv2 [39], and
MobileNetV2 [22], respectively. In around 2–3 M, 4–5 M, and 6–10 M parameter budget
models, our model’s top-1 accuracy is 90.7%, 91.1%, and 91.3%, which is at least 4% higher
than the accuracy achieved by the current mainstream lightweight CNN-based models
such as MobileNetV3 [23], GhostNetV2 [50], and EfficientNet [21], and at least 3% higher
than ViT-based models such as MobileViTv2 [39]. In the parameter size range from 10 to
20 M, our model achieves the highest recognition accuracy with the smallest number of
parameters and has lower FLOPs than mobileViTv2 [39]. Compared with the CNN-based
model GhostNetV2 [50], the performance is improved by nearly 6%. We also compared the
performance with recent lightweight food recognition networks. The results show that the
recognition accuracy of our network (90.7%) is much higher than that of LNAS–NET [16]
and LTBDNN(TD–192) [17] (76.8%), in the case of a comparable or significantly fewer
number of parameters.

Table 2. Performance comparison on ETHZ Food–101. EHFR–Net–x: x denotes the width multiplier
on the base model.

Method Top-1 Acc. #Params #FLOPs

ShuffleNetV2-0.5 [19] 74.3% 0.5 M 41.6 M
EHFR–Net-0.5 89.4% 0.8 M 428.3 M

MobileViTv2-0.5 [39] 87.0% 1.1 M 480.2 M
ShuffleNetV2-1.0 [19] 78.0% 1.4 M 148.8 M
MobileNetV3-0.5 [23] 82.4% 1.5 M 73.3 M
GhostNetV2-0.5 [50] 81.2% 1.7 M 54.0 M

EHFR–Net-0.75 90.4% 1.8 M 981.9 M

MobileViTv2-0.75 [39] 87.2% 2.5 M 1051.4 M
ShuffleNetV2-1.5 [19] 80.3% 2.6 M 303.6 M
MobileNetV3-0.75 [23] 85.5% 2.8 M 161.9 M

EHFR–Net-1.0 90.7% 2.8 M 1238.5 M

MobileNetV3-1.0 [23] 86.2% 4.3 M 218.9 M
MobileViTv2-1.0 [39] 87.6% 4.4 M 1843.4 M

EHFR–Net-1.25 91.1% 4.5 M 2104.5 M
EfficientNeT B0 [21] 85.2% 4.7 M 566.9 M
GhostNetV2-1.0 [50] 83.6% 5.0 M 176.9 M

ShuffleNetV2-2.0 [19] 82.0% 5.6 M 596.4 M
MobileNetV3-1.25 [23] 86.2% 6.4 M 366.8 M

EHFR–Net-1.0 91.3% 6.4 M 2985.5 M
MobileViTv2-1.25 [39] 88.3% 6.9 M 2856.0 M
GhostNetV2-1.3 [50] 84.8% 7.8 M 282.5 M
MobileNetV3-1.5 [23] 86.5% 8.6 M 500.4 M
MobileViTv2-1.5 [39] 88.6% 9.9 M 4089.3 M

EHFR–Net-2.0 91.5% 11.1 M 4787.4 M
GhostNetV2-1.6 [50] 85.5% 11.2 M 415.0 M

MobileViTv2-1.75 [39] 88.9% 13.4 M 5543.5 M
GhostNetV2-1.9 [50] 85.7% 15.3 M 572.8 M
MobileViTv2-2.0 [39] 89.5% 17.5 M 7218.3 M

LNAS–NET [16] 75.9% 1.8 M -
LTBDNN(TD–192) [17] 76.8% 12.2 M -

EHFR–Net-1.0 90.7% 2.8 M 1238.5 M
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4.2. Results on Vireo Food–172

The results for VireoFood–172 are shown in Table 3. Our method achieves optimal
performance under various ranges of parameter quantities, improving performance by
nearly 5% compared with the CNN-based model MobileNetV3 [23]. Compared with the
ViT-based SOTA model MobileViTv2 [39], our method improves the performance by 3%.
We have concluded that the superior performance on Vireo Food–172 is attributable to the
dataset containing a larger variety of Chinese dishes, as well as having a greater range
of ingredients.

Table 3. Performance comparison on Vireo Food–172. EHFR–Net–x: x denotes width multiplier on
the base model.

Method Top-1 Acc. #Params #FLOPs

ShuffleNetV2-0.5 [19] 74.3% 0.5 M 41.6 M
EHFR–Net-0.5 89.4% 0.8 M 428.3 M

MobileViTv2-0.5 [39] 87.3% 1.2 M 480.2 M
ShuffleNetV2-1.0 [19] 81.0% 1.4 M 148.9 M
MobileNetV3-0.5 [23] 83.0% 1.6 M 73.4 M
GhostNetV2-0.5 [50] 81.8% 1.8 M 54.1 M

EHFR–Net-0.75 91.0% 1.8 M 956.0 M

MobileViTv2-0.75 [39] 88.0% 2.5 M 1051.4 M
ShuffleNetV2-1.5 [19] 82.4% 2.7 M 303.7 M

EHFR–Net-1.0 91.3% 2.8 M 1210.3 M
MobileNetV3-0.75 [23] 85.9% 2.9 M 162.0 M

MobileNetV3-1.0 [23] 86.7% 4.4 M 219.0 M
EHFR–Net-1.25 91.7% 4.5 M 2066.5 M

MobileViTv2-1.0 [39] 88.2% 4.5 M 1843.4 M
EfficientNeT B0 [21] 83.6% 4.8 M 567.0 M
GhostNetV2-1.0 [50] 84.7% 5.1 M 117.0 M

ShuffleNetV2-2.0 [19] 83.8% 5.7 M 596.6 M
EHFR–Net-1.5 91.8% 6.5 M 2985.5 M

MobileNetV3-1.25 [23] 86.9% 6.5 M 366.9 M
MobileViTv2-1.25 [39] 87.9% 6.9 M 2856.1 M
GhostNetV2-1.3 [50] 85.7% 7.9 M 282.5 M
MobileNetV3-1.5 [23] 86.5% 8.7 M 500.4 M

EHFR–Net-1.75 91.7% 8.8 M 3891.4 M
MobileViTv2-1.5 [39] 88.6% 10 M 4089.4 M

EHFR–Net-2.0 91.9% 11.1 M 4787.5 M
GhostNetV2-1.6 [50] 86.2% 11.3 M 415.1 M

MobileViTv2-1.75 [39] 89.1% 13.5 M 5543.5 M
GhostNetV2-1.9 [50] 86.0% 15.4 M 572.9 M
MobileViTv2-2.0 [39] 89.4% 17.6 M 7218.4 M

4.3. Results on UEC Food256

Table 4 reveals results that are similar to those of the other two datasets. Our method
achieves optimal performance under various ranges of parameter quantities, improving
performance by more than 5% compared with the CNN-based model MobileNetV3 [23].
Although the FLOPs of the method are higher than those based on CNN, the signifi-
cant improvement in recognition accuracy is worthwhile. Compared with the ViT-based
SOTA model MobileViTv2 [39], our method improves the performance by 1–2% with
fewer calculations.
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Table 4. Performance comparison on UEC Food256. EHFR–Net–x: x denotes width multiplier on the
base model.

Method Top-1 Acc. #Params #FLOPs

ShuffleNetV2-0.5 [19] 74.3% 0.5 M 41.6 M
EHFR–Net-0.5 89.4% 0.8 M 428.3 M

MobileViTv2-0.5 [39] 69.1% 1.2 M 465.9 M
ShuffleNetV2-1.0 [19] 55.2% 1.5 M 149.0 M
MobileNetV3-0.5 [23] 62.1% 1.7 M 73.5 M

EHFR–Net-0.75 71.5% 1.8 M 956.0 M
GhostNetV2-0.5 [50] 61.1% 1.9 M 54.2 M

MobileViTv2-0.75 [39] 69.8% 2.6 M 1051.5 M
ShuffleNetV2-1.5 [19] 57.5% 2.7 M 303.7 M

EHFR–Net-1.0 71.6% 2.9 M 1210.4 M
MobileNetV3-0.75 [23] 64.9% 3.0 M 162.1 M

MobileNetV3-1.0 [23] 65.5% 4.5 M 219.0 M
MobileViTv2-1.0 [39] 70.0% 4.5 M 1843.4 M

EHFR–Net-1.25 71.9% 4.6 M 2066.6 M
EfficientNet B0 [21] 64.0% 4.9 M 567.1 M

GhostNetV2-1.0 [50] 63.9% 5.2 M 177.1 M
ShuffleNetV2-2.0 [19] 60.1% 5.9 M 596.7 M

EHFR–Net-1.5 72.3% 6.5 M 2941.3 M
MobileNetV3-1.25 [23] 65.7% 6.6 M 367.0 M
MobileViTv2-1.25 [39] 71.2% 7.0 M 2856.1 M
GhostNetV2-1.3 [50] 65.0% 8.0 M 282.7 M

EHFR–Net-1.75 72.6% 8.8 M 3840.2 M
MobileNetV3-1.5 [23] 67.1% 8.8 M 500.5 M
MobileViTv2-1.5 [39] 71.2% 10.0 M 4089.5 M

EHFR–Net-2.0 72.7% 11.2 M 4731.2 M
GhostNetV2-1.6 [50] 65.5% 11.4 M 415.2 M

MobileViTv2-1.75 [39] 71.4% 13.6 M 5543.6 M
GhostNetV2-1.9 [50] 66.1% 15.5 M 573.0 M
MobileViTv2-2.0 [39] 71.5% 17.7 M 7218.5 M

4.4. Qualitative Analysis and Visualization

Unlike traditional CNN-based models that focus on local features, the EHFR–Net
shows better quality in extracting global features. Figure 5 shows the comparison by the
method provided by Grad–CAM [51]. Results are obtained using only local convolution
and using both the LP–ViT-based global feature and the CNN-based local feature. In
Figure 5, (a) is from dataset ETHZ Food–101; and (b) is from Vireo Food–172. The three
columns on the left are examples of food-image types that can be correctly identified by
both methods, and the seven columns on the right are examples that only EHFR–Net can
correctly identify but the CNN-based method failed. The first row is the original image,
the second is heat maps generated using only local convolution, and the third is heat
maps generated by EHFR–Net. As can be seen from Figure 5: (1) For food images with
single ingredients and simple backgrounds, both methods can achieve accurate recognition
by accurately focusing on local features of the image; (2) For food images with diverse
ingredients and complex backgrounds, traditional CNN-based networks often cannot
focus on key distinctive features and are more susceptible to background interference.
EHFR–Net is better able to capture global information and key distinctive information;
(3) Since Chinese food has richer ingredients, the diversity and complexity of food images
are higher, and the requirements for the model’s ability to grasp global information is
higher. The experimental results of EHFR–Net on the dataset Vireo Food–172 show that it
has significantly stronger capabilities in this regard. In summary above, results show that
the EHFR–Net is more suitable for food images and can achieve better recognition results.
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three columns both have achieved good recognition results, while in the last seven columns, only
EHFR–Net is correct, and pure CNN-based method fails.

4.5. Ablation Study

In this section, we ablate important design elements in the proposed model EHFR–Net
using image classifications on three datasets. The results are summarized in Table 5.

Table 5. Ablation study on Food-101, Food-172, and Food256. MHA: Multi-Head Attention, ANS:
Adjusted Network Structure, TNS: Traditional Network Structure.

Dataset Ablation Top-1 Acc. #Params #FLOPs

Food-101

EHFR–Net-1.0 90.67% 2.82 M 1210.31 M
LP–ViT→MHA 88.80% 3.67 M 6292.49 M

w/o LP–ViT 88.37% 3.19 M 1082.62 M
w/o CNN 87.81% 2.89 M 1667.64 M

ANS→ TNS 87.95% 4.52 M 842.1 M

Food-172

EHFR–Net-1.0 91.38% 2.84 M 1210.33 M
LP–ViT→MHA 89.66% 3.70 M 6292.51 M

w/o LP–ViT 90.05% 3.21 M 1082.64 M
w/o CNN 89.86% 2.91 M 1667.67 M

ANS→ TNS 89.36% 4.55 M 842.15 M

Food256

EHFR–Net-1.0 71.30% 2.87 M 1210.36 M
LP–ViT→MHA 69.28% 3.72 M 6292.54 M

w/o LP–ViT 68.27% 3.24 M 1082.67 M
w/o CNN 68.19% 2.94 M 1667.69 M

ANS→ TNS 67.26% 4.57 M 842.18 M

• Effectiveness of LP–ViT. We first present an ablation study to verify the efficiency of the
proposed LP–ViT design by replacing the LP-ViT block with the original Multi-Head
Attention (MHA) block. Compared with the ViT model using the ordinary MHA,
the EHFR–Net using LP–ViT achieved the highest Top-1 accuracy with significantly
reduced calculation and fewer parameters: 90.67% versus 88.80% (Food–101), 91.38%
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versus 89.66% (Food–172), 71.30% versus 69.28% (Food256). The computational effort
is only about one-sixth that of the MHA. This shows that LP–ViT can extract global
features from food images more efficiently, thereby improving the accuracy and
efficiency of the model.

• Effectiveness of HBlock integrated with CNN and LP–ViT. We designed a module
HBlock that combines the CNN and ViT in series as the basic module of the model.
Compared with models that only use CNN and models that only use ViT, EHFR–
Net’s Top-1 recognition rate has significant advantages: 90.67% versus 88.37%, 87.81%
(Food–101), 91.38% versus 90.05%, 89.86% (Food–172), 71.30% versus 68.27%, 68.19%
(Food256). The results show that the fusion CNN and ViT strategy designed by HBlock
based on the characteristics of food images can effectively extract local and global
features to achieve better recognition results.

• Effectiveness of adjusted network architecture. Based on the characteristics of the
food-image recognition task, we designed a new architecture that is different from
the traditional hybrid model network structure. This structure allows our model
to achieve higher accuracy while further achieving lightweight. Compared with
networks using the same modules but traditional structures, EHFR–Net achieves
higher accuracy in a smaller size: (2.82 M, 90.67%) versus (4.52 M, 87.95%) (Food–101),
(2.84 M, 91.38%) versus (4.55 M, 89.36%) (Food–172), (2.87 M, 71.30%) versus (4.57 M,
67.26%) (Food256).

4.6. Discussion

In the realm of lightweight neural networks, such as ShuffleNetv2 [19], ESPNetV2 [20],
EfficientNet [21], MobileNetV2 [22], and MobileNetV3 [23], notable advancements have
been achieved in terms of lightweight design. However, their performance in food-image
recognition tasks falls short due to their limitation in extracting global information from
shallow networks, relying solely on convolutions for local feature extraction. On the
other hand, pure Vision Transformer (ViT) networks, exemplified by SwinT [26], Effi-
cientFormer [27], LightViT [28], EfficientViT [29], MiniViT [30], and TinyViT [31], excel in
capturing global information but struggle to effectively capture local fine-grained features
of images. Moreover, the inherent characteristics of transformer structures contribute to
larger parameter and computational requirements, compromising the balance between
high-recognition accuracy and lightweight design. Hybrid networks that combine convolu-
tional and ViT architectures, such as MobileFormer [32], CMT [33], CvT [34], BoTNet [35],
Next–ViT [36], EdgeViTs [37], MobileViTv1 [38], and MobileViTv2 [39], face challenges
in achieving an efficient fusion of local and global features, resulting in limited accu-
racy gains. Additionally, the use of traditional network structures hinders the extent of
model lightweighting.

Our proposed EHFR–Net model successfully addresses these challenges by achieving
an efficient fusion of convolutional and ViT structures, enabling the effective extraction of
both local features and global information. The adoption of a novel network architecture,
distinct from traditional structures, allows our model to achieve higher accuracy with
reduced parameters and computational overhead.

However, our model, with its predominant use of ViT structures in the overall archi-
tecture and the utilization of the original model parameters during the inference stage,
introduces latency concerns. Future work will focus on optimizing latency by implement-
ing reparameterization techniques during the inference stage, aligning the model for better
applicability on mobile devices. This optimization aims to contribute more effectively to
daily dietary and nutritional management.

5. Conclusions

This work proposes a lightweight hybrid neural network model named EHFR–Net,
which integrates CNN and ViT in order to capture the specific characteristics of food
images. On the ViT side, we use the LP–ViT module to allow all pixels to participate
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in correlation calculations and ensure that the position information between patches is
not destroyed through a series of reversible operations, thereby achieving efficient global
feature extraction. The global features extracted by the LP–ViT module are integrated
with the lightweight CNN network inverted residual module through a skip connection to
achieve more accurate food-image recognition. We adopted a lightweight network design
on both the ViT side and the CNN side and adjusted the overall network layout of EHFR–
Net based on the characteristics of LP–ViT, thus achieving a lightweight overall model.

Lightweight food-image recognition is more conducive to deployment on terminal
devices such as mobile phones, providing users with convenient and comprehensive nutri-
tional information, effectively serving people’s health management. Future work includes
research on implementing lightweight neural network models containing food image recog-
nition and recommendation functions that match specific hardware and operating systems.
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