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 a b s t r a c t

Zero-Shot Detection, the ability to detect novel objects without training samples, exhibits immense potential in 
an ever-changing world, particularly in scenarios requiring the identification of emerging categories. However, 
effectively applying ZSD to fine-grained domains, characterized by high inter-class similarity and notable intra-
class diversity, remains a significant challenge. This is particularly pronounced in the food domain, where the 
intricate nature of food attributes—notably the pervasive visual ambiguity among related culinary categories and 
the extensive spectrum of appearances within each food category—severely constrains the performance of exist-
ing methods. To address these specific challenges in the food domain, we introduce Zero-Shot Food Detection with 
Semantic Space and Feature Fusion (ZeSF), a novel framework tailored for Zero-Shot Food Detection. ZeSF inte-
grates two key modules: (1) Multi-Scale Context Integration Module (MSCIM) that employs dilated convolutions 
for hierarchical feature extraction and adaptive multi-scale fusion to capture subtle, fine-grained visual distinc-
tions; and (2) Contextual Text Feature Enhancement Module (CTFEM) that leverages Large Language Models 
to generate semantically rich textual embeddings, encompassing both global attributes and discriminative local 
descriptors. Critically, a cross-modal alignment further harmonizes visual and textual features. Comprehensive 
evaluations on the UEC FOOD 256 and Food Objects With Attributes (FOWA) datasets affirm ZeSF’s superiority, 
achieving significant improvements in the Harmonic Mean for the Generalized ZSD setting. Crucially, we further 
validate the framework’s generalization capability on the MS COCO and PASCAL VOC benchmarks, where it 
again outperforms strong baselines. The source code will be publicly available upon publication.

1.  Introduction

Food computing is an interdisciplinary field. It merges computer vi-
sion and food science. This field plays an vital role in analyzing and un-
derstanding food-related visual data [1,2]. With the aid of multimedia 
technologies, food computing now supports many applications. These 
applications include food safety monitoring [3], intelligent nutritional 
assessment [4], and personalized dietary guidance systems [5]. Among 
these, food detection is a core technology. It involves localizing and 
identifying specific food items in images. This capability enables practi-
cal systems such as automated retail checkout systems [6]. However, the 
vast and ever-evolving variety of food items in the real world presents 
a significant challenge. Traditional supervised detection models strug-
gle with scalability and adaptability to emerging food categories due to 
high annotation costs and limited generalization [7].
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Zero-Shot Detection (ZSD) enables the detection of unseen cate-
gories through knowledge transfer [8]. However, early methods rely-
ing on coarse semantics prove insufficient for the fine-grained nature 
of food [9]. Food objects present three primary challenges, as shown in 
Fig. 1. These challenges differ from those of rigid general objects that 
have consistent structural features. First, they exhibit high inter-class 
similarity, where different dishes share overlapping visual attributes 
(e.g., “braised spareribs” vs. “sweet and sour pork ribs”). Second, such 
dishes show high intra-class diversity, as the same dish varies markedly 
with preparation (e.g., “fried chicken steak”). Third, there is a lack of 
rigid structural constraints, leading to high compositional complexity 
and non-rigidity.

These factors collectively demand an architecture capable of process-
ing multi-scale compositional features and domain-specific semantics. 
Generic ZSD frameworks do not adequately meet these requirements. 
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Fig. 1. Fine-grained visual challenges in ZSFD versus general object detection. Left: food objects exhibit high inter-class similarity (e.g., different tofu/spareribs 
dishes share color, shape, material). Right: food objects show high intra-class diversity (e.g., fried chicken steak varies by cooking style, plating). In contrast, general 
objects (e.g., person/skateboard) possess distinctive structural features that are consistent and discriminative.

In Generalized ZSD (GZSD), where seen and unseen categories coex-
ist at inference, these difficulties are further exacerbated. While recent 
advancements in Large Language Models (LLMs) can provide richer se-
mantic information [10]. However, effectively integrating them to re-
solve extreme visual-semantic ambiguities in the food domain remains 
an open challenge.

To this end, we propose Zero-Shot Food Detection with Seman-
tic Space and Feature Fusion (ZeSF), a novel Zero-Shot Food De-
tection (ZSFD) framework. It features a purpose-built, dual-pathway 
“global-local” architecture. Our Multi-Scale Context Integration Module 
(MSCIM) is motivated by the compositional nature of food. It captures 
fine-grained ingredient details and balances local and global dish struc-
tures. Concurrently, the Contextual Text Feature Enhancement Module 
(CTFEM) mitigates high inter-class similarity. It achieves this by struc-
turing LLM-generated descriptions into multi-granular representations, 
enabling precise discrimination. We posit that addressing these food-
specific challenges will foster robust, generalizable principles. The core 
novelty of this work lies not in isolated components, but in a holistic 
design that tackles the dual challenges of fine-grained ZSFD via this 
synergistic architecture. Our main contributions are summarized as fol-
lows:

1. We propose ZeSF, a novel framework that aligns visual and textual 
features in a shared semantic space, ensuring strong generalization 
to unseen food categories while maintaining robust performance on 
seen ones.

2. To address the dual challenges of visual ambiguity and seman-
tic overlap in food detection, we introduce two complementary 
modules. The MSCIM enhances visual representations by captur-
ing both local details and global dish structure. Concurrently, the 
CTFEM structures culinary descriptions generated by LLMs into 
multi-granular embeddings. Together, these modules strengthen 
cross-modal alignment and improve discrimination under inter-class 
similarity and intra-class diversity.

3. Extensive experiments on UEC FOOD 256 and Food Objects With At-
tributes (FOWA) demonstrate superior ZSD and GZSD performance, 
while additional evaluations on MS COCO and PASCAL VOC confirm 
the effectiveness and efficiency of our integration strategy beyond 
the food domain.

The remainder of this paper is structured as follows: Section 2 re-
views related works in ZSD and food computing. Section 3 details the 
architecture of the proposed ZeSF framework. Section 4 describes the 
experimental setup and presents the results and analysis. Finally, Sec-
tion 5 concludes this work.

2.  Related work

2.1.  Zero-shot learning

Zero-Shot Learning (ZSL) recognizes unseen categories by aligning 
visual features with auxiliary semantics [11]. Early methods learned 
shared compatibility spaces with class prototypes [12] or defined at-
tribute subspaces [13]. Recent Transformer-based approaches intensify 
visual-semantic fusion. Examples include progressive semantic injec-
tion to mitigate drift [14] and part-level grounding refinement [15]. 
Dynamic unary convolution in Transformers further enables adaptive 
receptive-field modulation [16]. This mechanism aligns closely with the 
multi-scale context modeling in our MSCIM. A parameter-efficient fine-
tuning paradigm for Vision-Language Models (VLMs) is also relevant to 
the textual adaptation in CTFEM [17]. Despite these advances, a recent 
survey on fine-grained ZSL emphasizes that key challenges remain unre-
solved. These include subtle inter-class differences and high intra-class 
diversity [18]. Our work addresses these challenges in a detection set-
ting. We mine structured, multi-attribute culinary descriptions from an 
LLM. We then couple them with a multi-dilation enhancement module. 
This strategy bridges semantic richness and spatial discriminability for 
fine-grained food detection.

2.2.  Zero-shot object detection

Extending ZSL to localization tasks, ZSD methods are categorized 
into typically mapping-based [8,9,19] and generative-based [20,21] ap-
proaches. Mapping-based methods establish direct visual-semantic rela-
tionships. For instance, HRE was proposed to combine label and seman-
tic embeddings [19]. Meanwhile, CZSD [9] enhanced unseen category 
detection through semantic-guided contrastive learning. SA [8] further 
advanced this by integrating class-adaptive contrastive loss into DEtec-
tion TRansformer (DETR) [22] for better alignment. Generative methods 
like GTNet [21] synthesize unseen features via GANs, or utilize synthetic 
data [23]. A key limitation of existing approaches is the seen-category 
bias. Models often misclassify unseen objects as seen categories, thus 
suppressing unseen performance. Our mapping-based approach allevi-
ates this bias and addresses partial observation. This achieves a more 
balanced performance between seen and unseen categories, which is 
crucial for complex food data.

2.3.  Zero-shot food detection

ZSFD targets the challenging task of localizing and identifying un-
seen food categories, which is complicated by fine-grained attributes 
and high intra-class diversity [7]. The predominant approach in this area 
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Fig. 2. Overall framework of our proposed ZeSF. An input image is processed by a backbone and the MSCIM-Enhanced Transformer Encoder to obtain multi-scale 
visual features. In parallel, CTFEM uses LLM-derived textual descriptions to form global and local semantic embeddings, which are then aligned with visual features 
for detection.

Fig. 3. Pipeline of the MSCIM-Enhanced Transformer Encoder, where an MSCIM is prepended to each of the N layers to enrich features for the standard MSDeform 
Attention.

relies on generative models to synthesize visual features for these unseen 
classes [7,24]. However, these methods struggle to produce authentic 
and discriminative synthetic features. In contrast, this paper proposes 
ZeSF, a mapping-based framework that circumvents feature generation. 
ZeSF directly aligns robust visual representations with rich semantic de-
scriptions. Specifically, it leverages our multi-scale architecture to cap-
ture visual details and LLMs to generate comprehensive semantic cues. 
This direct alignment strategy offers a more effective paradigm for re-
solving the visual and semantic ambiguities inherent in food detection.

3.  Method

3.1.  Problem formulation

This study addresses the task of ZSFD (Zero-Shot Food Detection), 
aiming to accurately detect instances of novel food categories not seen 
during training. Given a training dataset 𝑠 containing images 𝐼𝑖 with 
object annotations (𝑏𝑗 , 𝑦𝑗 ) for 𝑁𝑠 seen categories 𝑠, our objective is to 
train a model capable of detecting objects from both 𝑠 and a disjoint set 
of 𝑁𝑢 unseen categories 𝑢 (𝑠 ∩ 𝑢 = ∅). Crucially, no training data is 
available for 𝑢. To facilitate the detection of these unseen classes, we 
leverage semantic descriptions  = 𝑠 ∪𝑢 for all categories, where 
𝑠 ∈ ℝ𝑁𝑠×𝑑 and 𝑢 ∈ ℝ𝑁𝑢×𝑑 denote the 𝑑-dimensional semantic em-
beddings for seen and unseen categories respectively. These descrip-
tions, potentially generated by LLMs and processed by VLMs, enable 
aligning visual features with semantic representations for generaliza-
tion. Evaluation is conducted on a test dataset 𝑡 comprising objects 
from 𝑠 ∪ 𝑢. We consider two standard settings: ZSD, focused on de-
tecting only 𝑢 objects, and GZSD (Generalized Zero-Shot Detection), 
which requires detecting objects from 𝑠 ∪ 𝑢 and is more challenging 
as it necessitates discrimination between seen and unseen classes during 
inference.

3.2.  Scaling contextual understanding with transformers

As shown in Fig. 3, the MSCIM-Enhanced Transformer Encoder pro-
cesses the input feature map 𝑋 ∈ ℝ𝐵×𝐶×𝐻×𝑊  through 𝑁 stacked layers, 

where 𝐵 is the batch size, 𝐶 the channel dimension, and 𝐻,𝑊  the spatial 
height and width. We adopt a Deformable DETR encoder and prepend 
a lightweight MSCIM (Multi-Scale Context Integration Module) to each 
encoder layer. As illustrated in Fig. 4, MSCIM acts as a pre-attention en-
hancer that produces a multi-dilation feature 𝑀 , which is then fed into 
the standard MSDeform Attention [25]. Importantly, MSDeform Atten-
tion itself remains unchanged: its reference points, sampling offsets, and 
attention weights are learned independently of MSCIM.

MSCIM addresses the fine-grained yet cluttered statistics of images 
by implementing a SWDA-style sparse local self-attention operator [26] 
along three dilation pathways (𝑑=1, 2, 3). For a query at (𝑖, 𝑗), keys/val-
ues are sampled from:
{(𝑖′, 𝑗′) ∣ 𝑖′ = 𝑖 + 𝑝 × 𝑑, 𝑗′ = 𝑗 + 𝑞 × 𝑑}, −𝑤

2 ≤ 𝑝, 𝑞 ≤ 𝑤
2 , (1)

and the output is computed via the scaled dot-product:

𝑦𝑖𝑗 = Sof tmax

(

𝑄𝑖𝑗𝐾⊤
𝑖𝑗,𝑑

√

𝑑𝑘

)

𝑉𝑖𝑗,𝑑 , (2)

where 𝑑𝑘 is the key dimension. As shown in Fig. 4 right, the pathways 
cover complementary ranges: 𝑑=1 corresponds to local micro-texture, 
𝑑=2 captures structural-global cues, and 𝑑=3 represents contextual-
global layout. To best leverage these pathways under a fixed 8-head 
budget, we adopt a non-uniform allocation of 2, 3, 3. With 𝐶 = 256 and 
ℎ = 8, each head has 𝑑ℎ = 32 channels, yielding per-path channel sizes 
of [64, 96, 96]. This allocation emphasizes structural and contextual cues 
with three heads each for 𝑑 = 2 and 𝑑 = 3, while assigning two heads 
to fine micro-texture at 𝑑 = 1. Ablation studies validate this design as 
achieving the best seen-unseen trade-off (Table B.4).

Finally, the outputs from all eight dilated attention heads, 𝐿1,… , 𝐿8, 
are integrated to form the MSCIM output 𝑀 via:
𝑀 = 𝑊𝑂 ⋅ Concat[𝐿1, 𝐿2,… , 𝐿8] + 𝑏𝑂 , (3)

where 𝐿𝑘 ∈ ℝ𝐵×𝑑ℎ×𝐻×𝑊  denotes the per-head feature map, ℎ=8 is the to-
tal number of heads, and 𝑑ℎ=𝐶∕ℎ is the head dimension. We view 𝑊𝑂 ∈
ℝ𝐶×𝐶 with bias 𝑏𝑂 ∈ ℝ𝐶 as a position-wise linear projection, equivalent 
to a 1×1 convolution, shared across spatial locations. The concatenation 

Pattern Recognition 173 (2026) 112928 

3 



X. Wang et al.

Fig. 4. Illustration of the MSCIM. Left: architecture of the MSCIM-Enhanced Transformer Encoder layer. The MSCIM block generates an enhanced feature map 𝑀
via multi-dilation sparse self-attention, which is then consumed by the MSDeform Attention. Right: visualization of MSCIM’s receptive fields. The three dilation 
pathways (𝑑 = 1, 2, 3) are designed to capture complementary features ranging from local micro-textures to global contextual layout.

is performed along the channel/head axis, producing 𝑀 ∈ ℝ𝐵×𝐶×𝐻×𝑊

with the same spatial and channel dimensions as the input feature, now 
enriched with integrated multi-scale information. No additional normal-
ization or gating is applied, keeping the enhancement lightweight. The 
feature 𝑀 is then passed to the subsequent MSDeform Attention within 
the same encoder layer as shown in Fig. 4. Consequently, the only di-
visibility requirement is 𝐶 mod ℎ = 0, with 𝐶=256 and ℎ=8 in our setup, 
and 𝐶 does not need to be divisible by the number of dilation pathways, 
which is three. Implementation details are provided in Section 4.1.3.

3.3.  Synthesizing context and detail for semantic refinement

Traditional ZSFD methods often rely on simplified text descriptions 
like “a photo of {class name}”. This overlooks the rich visual and de-
tailed characteristics of food items, crucial for distinguishing similar 
dishes. To capture these fine-grained details and enhance the model’s 
semantic understanding, we incorporate LLM-enriched descriptions and 
introduce CTFEM (Contextual Text Feature Enhancement Module) to 
structurally fuse them.

3.3.1.  LLM-based semantic description generation
To create powerful semantic representations that move beyond sim-

ple class labels, we utilized a LLM, GPT-4o, to generate detailed textual 
descriptions for each food category. These generated descriptions are de-
signed to be rich and informative, capturing a wide array of observable 
characteristics such as key ingredients, colors, textures, and common 
preparation styles. For example, the category “braised spareribs” can be 
described as: “Tender pork ribs slow-cooked in a savory soy-based sauce 
until caramelized, with a glossy dark brown glaze, chunks of highly ten-
der meat, often accompanied by onions or ginger.” This provides a far 
deeper semantic understanding than the class name alone.

The high quality of these LLM-generated descriptions allows them 
to be used directly to create more informative semantic vectors with-
out any manual post-processing. This enhanced semantic information is 
critical for enabling the model to accurately distinguish fine-grained cat-
egories and recognize novel food items. A detailed analysis of the impact 
of different text generation methods is presented in Section 4.5.4.

3.3.2.  Contextual textual feature enhancement module
Effectively leveraging detailed semantic descriptions for ZSFD re-

quires prioritizing relevant cues. While the core category name, serv-
ing as a local feature, is vital for identification, the descriptive content, 
serving as a global feature, provides crucial details for fine-grained dis-
tinction. To balance these aspects, we propose a dual-granularity global-
local semantic fusion strategy within the CTFEM to generate enhanced 
textual representations.

As illustrated in Fig. 2, CTFEM integrates global and local textual 
features by extracting them from the LLM-generated descriptions.

Firstly, the global textual feature 𝑃𝐺 is extracted from the entire de-
tailed description 𝐷 using the pre-trained CLIP text encoder 𝜓CLIP, as it 
is known to produce effective textual embeddings aligned with visual 

features:

𝑃𝐺 = 𝜓CLIP(𝐷). (4)

Secondly, to obtain the local textual feature 𝑃𝐿, we utilize the CLIP text 
encoder on the core category name 𝑐𝑙𝑠:

𝑃𝐿 = 𝜓CLIP(𝑐𝑙𝑠). (5)

The category name 𝑐𝑙𝑠 is precisely defined as the primary noun phrase 
directly matching the predefined class label from our dataset used in 
the LLM prompt, ensuring 𝑃𝐿 strictly represents the intended category’s 
embedding. Finally, the enhanced global-local semantic vector 𝑃  is a 
weighted sum of 𝑃𝐺 and 𝑃𝐿:

𝑃 = 𝛾𝑃𝐺 + (1 − 𝛾)𝑃𝐿. (6)

Here, 𝛾 ∈ [0, 1] is a coefficient balancing global and local contributions, 
fixed once and reused on a validation set. This global-local weighting 
effectively combines rich contextual details with the precise category 
identity, yielding a more comprehensive and discriminative representa-
tion for diverse and visually similar food items. We opt for this straight-
forward linear combination as it provides an effective and interpretable 
way to balance the two feature types without introducing additional 
network parameters or risking overfitting.

A fixed, parameter-free fusion with 𝛾 = 0.6 is used across all datasets. 
We found this simple approach avoids the overfitting observed with 
learnable gating, preserves the interpretability of global vs. local roles, 
and enables a “semantic-capacity amplifier” effect when using rich LLM 
descriptions.

3.4.  Loss function

Our composite loss function is a weighted sum of three components 
designed to address classification, localization, and zero-shot knowledge 
transfer:

 = 𝜆clscls + 𝜆bboxbbox + 𝜆concon, (7)

where the localization term is bbox = 𝜆iouiou + 𝜆giougiou.
The loss components are weighted to reflect the challenges of fine-

grained food detection. First, we use focal loss cls to handle class im-
balance, with 𝜆cls = 1.0. Second, for localization, we combine IoU and 
GIoU to address deformable food items: GIoU supplies stable gradients 
for low-overlap boxes in early training, while IoU refines the fit. We 
assign higher weights, 𝜆iou = 5.0 and 𝜆giou = 2.0, to prioritize accurate 
cropping of ingredients and context. Finally, to enable generalization, 
we incorporate the class-aware contrastive loss con from [8] with a 
small weight of 𝜆con = 0.05, which gently guides visual–semantic align-
ment for unseen classes without over-constraining feature variance or 
harming seen-class performance.
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Table 1 
Performance comparison (%) on UEC FOOD 256 under ZSD and 
GZSD settings. † indicates methods based on generative models.
 Metric  Method  ZSD  GZSD

 Seen  Unseen  HM
 Recall@100  PL [32]  56.5  53.2  40.4  46.0

 BLC [33]  58.9  55.3  43.8  48.9
 CZSD [9]  60.7  57.6  45.5  50.8
 SU† [34]  61.9  52.5  52.8  52.6
 RRFS† [35]  64.8  54.9  55.1  55.0
 SeeDS† [7]  74.0  55.2  61.4  58.1
 ZSFDet† [24]  74.4  57.0  61.8  59.3
 SA [8]  92.9  71.2  86.9  78.3
 Ours  93.7  86.9  86.4  86.7

 mAP  PL [32]  14.5  18.9  11.6  14.4
 BLC [33]  19.2  20.5  15.2  17.5
 CZSD [9]  22.0  20.8  16.2  18.2
 SU† [34]  22.4  19.3  20.1  19.7
 RRFS† [35]  23.6  20.1  22.9  21.4
 SeeDS† [7]  27.1  20.2  26.0  22.7
 ZSFDet† [24]  27.3  21.9  26.1  23.8
 SA [8]  24.2  18.6  24.9  21.3
 Ours  29.1  22.2  27.0  24.4

4.  Experiments

4.1.  Experimental settings

4.1.1.  Benchmark datasets
We evaluate our framework on two fine-grained food datasets: UEC 

FOOD 256 [27] and FOWA [24]. To validate the generalization, we also 
report results on the large-scale MS COCO [28] and PASCAL VOC [29]. 
Table A.2 summarizes the statistics and class splits for all datasets.

4.1.2.  Evaluation metrics
We follow standard ZSD (Zero-Shot Detection) and GZSD (Gener-

alized Zero-Shot Detection) detection protocols with a disjoint split of 
classes into seen (𝑠) and unseen (𝑢). In ZSD we report the unseen 
mean Average Precision (mAP) at IoU 0.5 (mAP on 𝑢). In GZSD we 
report seen mAP (𝑆), unseen mAP (𝑈), and their Harmonic Mean (HM, 
HM = 2𝑆𝑈

𝑆+𝑈 ) as the primary balanced metric. For UEC FOOD 256, FOWA 
and PASCAL VOC, we report mAP and Recall@100 at IoU 0.5. For MS 
COCO, we additionally report Recall@100 at IoU 0.4 and 0.6 to probe 
localization robustness.

4.1.3.  Implementation details
We use a ResNet-50 backbone [30] for all datasets (Swin-T [31] 

for PASCAL VOC). Training adopts multi-scale resizing. Specifically, the 
shorter side ranges from 480 to 800 pixels, and the longer side is capped 
at 1333 pixels. During inference, the shorter side is fixed at 800 pixels. 
Features are channel-mapped to 𝐶 = 256 for an 8-head Transformer. For 
the MSCIM (Multi-Scale Context Integration Module), we apply a non-
uniform head split of 2, 3, 3 (𝑑 = 1, 2, 3). Similarly, the CTFEM (Con-
textual Text Feature Enhancement Module) uses a fixed weight 𝛾 = 0.6. 
Complete hyperparameters, including augmentation, optimizer, and loss 
weights, are detailed in Appendix Table A.1.

4.2.  Comparisons with the state-of-the-art method

4.2.1.  Results on UEC FOOD 256
Table 1 presents the performance comparison on UEC FOOD 256. 

Compared to the mapping-based baseline SA, our method improves the 
ZSD mAP from 24.2% to 29.1% and the GZSD HM from 21.3% to 
24.4%. Furthermore, ZeSF establishes a favorable balance against gen-
erative methods such as ZSFDet. While achieving a higher Unseen mAP, 
our model also boosts the Seen Recall@100 from 57.0% to 86.9%. This 

Table 2 
Performance comparison (%) on FOWA under ZSD and GZSD set-
tings. † indicates methods based on generative models.

Metric Method ZSD
 GZSD
 Seen  Unseen  HM

Recall@100

 ConSE [36]  39.7  58.0  38.1  46.4
 PL [32]  40.1  53.9  39.6  45.7
 BLC [33]  41.2  55.3  40.5  46.8
 CZSD [9]  48.0  86.1  44.8  58.9
 SU† [34]  45.3  82.3  44.1  57.4
 RRFS† [35]  48.8  86.6  47.6  61.4
 SeeDS† [7]  52.9  87.0  49.8  63.3
 ZSFDet† [24]  53.5  87.0  50.1  63.6
 SA [8]  89.3  97.5  65.5  78.3
 Ours  90.9  96.8  73.9  83.8

mAP

 ConSE [36]  0.8  54.3  0.7  1.4
 PL [32]  1.0  50.8  0.7  1.4
 BLC [33]  1.1  51.1  0.9  1.8
 CZSD [9]  4.0  81.2  2.1  4.1
 SU† [34]  3.9  79.1  2.3  4.5
 RRFS† [35]  4.3  82.7  2.7  5.2
 SeeDS† [7]  5.9  82.8  3.5  6.7
 ZSFDet† [24]  6.1  82.8  3.6  6.9
 SA [8]  7.7  90.5  5.4  10.1
 Ours  10.2  89.8  8.8  16.0

results in a higher HM, indicating that our approach improves general-
ization without compromising performance on seen classes.

4.2.2.  Results on FOWA
Table 2 presents the results on the FOWA dataset, where ZeSF out-

performs baselines including SA, ZSFDet, and CZSD. While SA achieves a 
higher seen-class mAP, our method improves unseen-class performance 
from 5.4% to 8.8%. This results in a higher GZSD HM of 16.0% com-
pared to 10.1%, indicating a more robust generalized model.

Compared to generative methods such as ZSFDet, our direct-mapping 
approach achieves a higher HM score of 16.0% compared to 6.9%. This 
suggests advantages in feature quality by avoiding low-fidelity synthe-
sis. Fig. 6 visually corroborates this claim, where ZeSF yields compact, 
well-separated clusters for unseen classes on UEC FOOD 256 and FOWA, 
unlike the scattered overlaps observed in SA.

4.2.3.  Multi-domain validation: MS COCO & PASCAL VOC
Although ZeSF is food-centric, we evaluate its transferability to gen-

eral objects to validate the broader applicability of its principles, namely 
multi-scale visual aggregation and dual-granularity semantic fusion. 
These experiments indicate generalization without claiming universal 
superiority.

Evaluations on MS COCO (with 48/17 and 65/15 splits) and PAS-
CAL VOC (with a 16/4 split) follow standard ZSD protocols. No hyper-
parameters or architecture were retuned. Only class descriptions were 
regenerated using the same offline LLM pipeline as for food datasets.

Tables 3–5 present the results. On MS COCO ZSD, ZeSF achieves 
22.0% and 24.3% mAP on the 48/17 and 65/15 splits. This represents 
improvements of +2.5% and +0.3% over SA. For GZSD, it yields the 
highest HM for Recall@100, 66.1% and 69.2%, and for mAP, 22.8% 
and 27.8%, showing balanced seen-unseen calibration. On PASCAL 
VOC, ZeSF attains 69.6% ZSD mAP and 57.0% GZSD HM. It boosts Seen 
from 64.8% to 67.2% while maintaining Unseen at 49.5% compared 
to 49.3%.

While effective, these gains are notably smaller than those on food 
datasets. For example, the GZSD HM improvements are +0.1% and 
+0.9% on COCO and +1.0% on VOC, compared to +3.1% and 
+5.9% on food datasets. This empirically validates the food-centric op-
timization. Specifically, MSCIM’s multi-dilation excels on food’s compo-
sitional hierarchy but offers limited extra value for rigid general objects. 
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Table 3 
Performance comparison (%) on MS COCO under ZSD setting. † indicates methods based on generative models.
 Method  Split  Recall@100  mAP  Split  Recall@100  mAP

 IoU=0.4  IoU=0.5  IoU=0.6  IoU=0.5  IoU=0.4  IoU=0.5  IoU=0.6  IoU=0.5
 CZSD [9]  48/17  56.1  52.4  47.2  12.5  65/15  62.3  59.5  55.1  18.6
 SU† [34]  48/17  –  –  –  –  65/15  54.4  54.0  47.0  19.0
 PL [32]  48/17  –  43.5  –  10.1  65/15  –  37.7  –  12.4
 BLC [33]  48/17  51.3  48.8  45.0  10.6  65/15  57.2  54.7  51.2  14.7
 RRFS† [35]  48/17  58.1  53.5  47.9  13.4  65/15  65.3  62.3  55.9  19.8
 TCB [37]  48/17  55.5  52.4  48.1  11.4  65/15  62.5  59.9  55.1  13.8
 SeeDS† [7]  48/17  59.2  55.3  48.5  14.0  65/15  66.4  63.8  56.5  20.1
 ZSFDet† [24]  48/17  58.6  54.7  48.3  14.0  65/15  66.5  64.2  56.7  20.3
 SA [8]  48/17  76.7  73.0  68.8  19.5  65/15  88.0  85.3  81.9  24.0
 M-RRFS† [20]  48/17  64.0  60.9  55.5  15.1  65/15  68.6  65.4  59.1  20.3
 Ours  48/17  86.3  82.9  79.0  22.0  65/15  89.1  86.5  83.4  24.3

Table 4 
Performance comparison (%) on MS COCO under GZSD settings. † indicates methods based on generative models.
 Method  Split  Recall@100  mAP  Split  Recall@100  mAP

 Seen  Unseen  HM  Seen  Unseen  HM  Seen  Unseen  HM  Seen  Unseen  HM
 CZSD [9]  48/17  65.7  52.4  58.3  45.1  6.3  11.1  65/15  62.9  58.6  60.7  40.2  16.5  23.4
 SU† [34]  48/17  –  –  –  –  –  –  65/15  57.7  53.9  55.7  36.9  19.0  25.1
 PL [32]  48/17  38.2  26.3  3.2  35.9  4.1  7.4  65/15  36.4  37.2  36.8  34.1  12.4  18.2
 BLC [33]  48/17  57.6  46.4  51.4  42.1  4.5  8.1  65/15  56.4  51.2  53.9  36.0  13.1  19.2
 RRFS† [35]  48/17  59.7  58.8  59.2  42.3  13.4  20.4  65/15  58.6  61.8  60.2  37.4  19.8  26.0
 TCB [37]  48/17  71.9  52.4  60.6  47.3  4.9  8.8  65/15  69.3  59.8  64.2  39.9  13.8  20.5
 SeeDS† [7]  48/17  60.1  60.8  60.5  42.5  14.5  21.6  65/15  59.3  62.5  60.9  37.5  20.3  26.3
 ZSFDet† [24]  48/17  60.1  60.7  60.4  42.5  14.3  21.4  65/15  59.3  63.1  61.1  37.5  20.5  26.5
 SA [8]  48/17  78.4  49.7  60.8  34.0  17.0  22.7  65/15  79.7  55.8  65.7  35.5  21.7  26.9
 M-RRFS† [20]  48/17  63.3  60.1  61.7  42.7  15.0  22.2  65/15  67.0  63.7  65.3  37.9  19.8  26.0
 Ours  48/17  86.6  53.4  66.1  51.5  14.6  22.8  65/15  81.5  60.2  69.2  37.0  22.3  27.8

Table 5 
Performance comparison (%) on PASCAL VOC un-
der ZSD and GZSD settings. † indicates methods 
based on generative models.
 Method  ZSD  GZSD

 Seen  Unseen  HM
 ConSE  52.1  59.3  22.3  32.4
 PL [32]  62.1  –  –  –
 BLC [33]  55.2  58.2  22.9  32.9
 SU† [34]  64.9  –  –  –
 CZSD [9]  65.7  63.2  46.5  53.8
 RRFS† [35]  65.5  47.1  49.1  48.1
 SeeDS† [7]  68.9  48.5  50.6  49.5
 ZSFDet† [24]  69.2  48.5  50.8  49.6
 M-RRFS† [20]  67.0  48.5  52.6  50.5
 TCB [37]  59.3  61.0  29.8  40.0
 SA [8]  68.7  64.8  49.3  56.0
 Ours  69.6  67.2  49.5  57.0

Similarly, CTFEM’s fusion is particularly effective with culinary seman-
tics but less so without preparation-induced diversity.

4.2.4.  Qualitative evaluation
Fig. 5 provides a qualitative comparison against the baseline SA and 

a representative generative method RRFS. It illustrates the generaliza-
tion capability of our method on UEC FOOD 256 and FOWA, highlight-
ing our framework’s effectiveness in challenging fine-grained scenarios.

A primary observation is our model’s ability to detect unseen cate-
gories in red bounding boxes, which baseline methods often miss. For 
example, in the first row of UEC FOOD 256, our method accurately local-
izes and classifies the unseen dish “dry curry”. In contrast, the baseline 
incorrectly predicts it as “fried rice.” On FOWA, our approach detects 
multiple unseen food items within complex tray settings, such as “celery 
tofu” in the third row. These items are overlooked by the baseline.

Furthermore, beyond just detecting unseen classes, our method also 
indicates higher confidence and more precise localization for seen cat-
egories. As shown in the fourth and fifth rows, our model’s bounding 
boxes are often tighter and more accurately placed compared to the SA 
and RRFS. These results clearly show that our framework enhances ZSD 
capabilities, leading to more reliable food recognition.

4.3.  Comparison with open-vocabulary detector

To validate our framework’s advantages over general-purpose vision-
language detectors, we compare against Grounding DINO [38]. As 
shown in Table C.7, zero-shot Grounding DINO achieves 5.6% HM 
on FOWA. Fine-tuning on seen classes improves seen mAP to 63.6% 
after 15 epochs but negatively impacts unseen mAP, dropping from 
7.2% to 1.3%. This reduces HM to 2.55%. In contrast, our method 
achieves 16.0% HM with balanced performance, reaching 89.8% 
on seen classes and 8.8% on unseen classes. This validates that 
fine-grained ZSFD requires domain-optimized architectures such as 
MSCIM and CTFEM, together with explicit semantic guidance from 
LLM-generated descriptions, which prevent the forgetting observed in 
Grounding DINO. See C.1 for detailed analysis.

4.4.  Feature visualization

The t-SNE [39] visualizations in Fig. 6 confirm our method’s abil-
ity to effectively learn high-fidelity features for unseen classes. The 
baseline SA’s features are scattered and overlapping, yielding low sil-
houette scores of 0.304 on UEC FOOD 256 and 0.331 on FOWA. In 
contrast, our method produces more compact and well-separated clus-
ters, improving these scores to 0.532 and 0.551, respectively. This im-
proved feature space directly results from our framework’s synergistic 
design. It effectively aligns discriminative visual features from MSCIM 
with rich semantic embeddings from CTFEM to enforce clear inter-class
boundaries.
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Fig. 5. Qualitative results on UEC-FOOD 256 (left) and FOWA (right). Our method (c) is compared against baselines SA (a) and RRFS (b). Red and green boxes 
denote unseen and seen classes, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 6. Comparison of t-SNE visualizations of unseen class feature embeddings. The baseline SA (left) exhibits scattered and overlapping distributions. In contrast, 
our method (right) forms compact and well-separated clusters, increasing the silhouette score from 0.304 to 0.532 on UEC FOOD 256.

Table 6 
Ablation study (%) on the contribution of different components on UEC FOOD 
256 and FOWA.
 Dataset  Components  ZSD  GZSD

 MSCIM  CTFEM  LLM Prompts  Seen  Unseen  HM
 UEC FOOD 256  –  –  –  24.2  18.6  24.9  21.3

✓  –  –  25.8  17.3  25.6  20.6
 – ✓  –  25.4  17.6  26.3  21.1
 –  – ✓  26.8  18.5  25.5  21.4
✓ ✓  –  25.8  18.4  25.8  21.5
✓  – ✓  26.4  18.9  26.0  21.9
 – ✓ ✓  27.6  19.0  26.8  22.2
✓ ✓ ✓  29.1  22.2  27.0  24.4

 FOWA  –  –  –  7.7  90.5  5.4  10.1
✓  –  –  8.0  86.4  5.9  11.0
 – ✓  –  7.9  89.9  6.8  12.7
 –  – ✓  9.0  90.4  7.2  13.3
✓ ✓  –  8.0  89.4  7.1  13.1
✓  – ✓  9.1  86.8  8.6  15.6
 – ✓ ✓  9.8  90.1  8.2  15.1
✓ ✓ ✓  10.2  89.8  8.8  16.0

4.5.  Ablation experiments

To analyze component effectiveness, we conduct ablation experi-
ments on both UEC FOOD 256 and FOWA, with results reported in
Table 6.

4.5.1.  Component effectiveness analysis
Under plain class-name semantics, neither MSCIM nor CTFEM alone 

yields large HM gains as shown in Table 6. This aligns with their de-
sign as semantic-capacity amplifiers rather than standalone boosters. 
Both modules reserve representational headroom for enriched LLM de-
scriptions. Specifically, these descriptions encode plating structure, in-
gredient co-occurrence, and preparation cues. Such details are absent in 
hand-crafted prompts such as “a photo of a {class}”.

With LLM-generated descriptions, their coordination produces sub-
stantial improvements. On UEC FOOD 256, HM increases from 21.3% 
to 24.4%, and on FOWA, from 10.1% to 16.0%. This reflects MSCIM’s 
multi-scale receptive aggregation grounding enriched semantics, and 
CTFEM’s global-local fusion stabilizing margins. The modest standalone 
shifts are intentional, tuned for structured semantic infusion. This is cor-
roborated by the t-SNE visualizations discussed in Section 4.4, which 
confirm higher-fidelity representations. Further validation is provided 
by the semantic scaling analysis in Section 4.5.4 and efficiency analysis 
in Section 4.6. These results indicate that the gains stem from principled 
co-design rather than new atomic operators.

4.5.2.  Effectiveness of MSCIM
The comparison between our full model and the variant without 

MSCIM reveals consistent performance variations. To further validate 
the internal design, we conducted additional ablation on the paral-
lel branches as reported in Table B.3. The removal of any single di-
lation branch, whether 𝑑 = 1, 𝑑 = 2, or 𝑑 = 3, leads to performance
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degradation compared to the full three-branch configuration. Notably, 
removing the 𝑑 = 2 branch causes the most significant decline, indicat-
ing the importance of intermediate-scale feature aggregation.

To evaluate head allocation variants, we ablated on UEC FOOD 256 
under ZSD and GZSD settings. The balanced configuration of 2, 3, and 
3 achieves the highest scores. Specifically, it yields 29.1% for ZSD and 
24.4% for GZSD HM. This outperforms alternatives like the split of 2, 4, 
and 2 with an HM of 23.1% and the split of 2, 2, and 4 with an HM of 
22.0%. The variant without MSCIM yields an HM of 22.2%, while un-
balanced splits such as 4, 2, and 2 reach 17.6%, showing notable drops. 
Relative ΔHM values further underscore the stability and effectiveness 
of the 2, 3, and 3 split.

4.5.3.  Effectiveness of CTFEM
The CTFEM module indicates its value through structured process-

ing of detailed LLM-generated descriptions. The observed performance 
variations in the configuration without CTFEM indicate the importance 
of converting rich textual descriptions into structured global and local 
semantic features. This provides more robust representations than basic 
embeddings for fine-grained class discrimination.

4.5.4.  Impact of LLM-generated descriptions
We validate the use of LLM-generated descriptions through two abla-

tions detailed in B.3. First, framework performance scales with the qual-
ity of the semantic source as shown in Table B.5. Upgrading from hand-
crafted prompts to GPT-4o yields a GZSD HM gain of +3.1% on UEC 
FOOD 256. Second, our approach outperforms prompt-learning meth-
ods such as CoOp. These results confirm that explicit culinary knowl-
edge from LLMs is essential for ZSFD. It cannot be effectively replaced 
by learned continuous prompts.

4.6.  Computational cost analysis

A detailed cost analysis validates the efficiency of our framework 
as provided in C.3. As shown in Table C.9, ZeSF achieves a favorable 
balance between performance and cost. It outperforms the baseline SA 
with faster inference speed and is more compute-efficient than heavier 
generative models. Its reliance on LLMs is a practical offline step with 
no inference cost.

4.7.  Focusing where it matters

To further validate the effectiveness of MSCIM, we use Grad-
CAM [40] to visualize attention regions in Fig. D.2. The visualizations 
reveal that integrating MSCIM enhances target localization. In contrast 
to the scattered attention of the baseline, our model concentrates focus 
on relevant object regions. This allows it to capture fine-grained details 
and identify multiple objects in complex scenes. Consequently, the at-
tention is more continuous and accurate.

4.8.  Impact of semantic quality on performance

A significant finding is that the framework’s performance scales with 
the quality of the LLM-generated descriptions. Upgrading from hand-
crafted templates to GPT-4o descriptions yields GZSD HM improve-
ments. Specifically, it provides a gain of +2.9% on UEC FOOD 256 and 
+2.9% on FOWA. Interestingly, GPT-3.5 reveals a trade-off. It shows 
a slight HM dip on UEC FOOD 256 but improves the unseen-class mAP 
by +1.9% in ZSD. This underscores the sensitivity of the model to se-
mantic granularity. This reliance on LLMs is a practical, one-time offline 
preprocessing step that has no impact on inference speed or cost. A full 
discussion is provided in B.2.

5.  Conclusion

Our primary contribution is ZeSF, a visual-semantic framework 
specifically tailored to fine-grained ZSFD (Zero-Shot Food Detection) 
and validated on UEC FOOD 256 and FOWA. Its design principles, 
namely expanding receptive fields through the MSCIM (Multi-Scale Con-
text Integration Module) and fusing global with local semantics, also 
yield consistent gains on MS COCO and PASCAL VOC. This indicates 
transfer beyond food-specific distributions without dataset-specific tun-
ing. The synergy between visual encoding at multiple scales and seman-
tic enrichment across dual granularities offers a valuable blueprint for 
other researchers. The modular nature of MSCIM and CTFEM (Contex-
tual Text Feature Enhancement Module) makes them transferable com-
ponents for tackling fine-grained zero-shot challenges in other domains, 
such as retail product recognition, biological species identification, or 
defect detection in manufacturing. For complementary evidence, Ap-
pendix Table C.8 reports class-wise APs on challenging categories.

Despite these strengths, we identify several avenues for future im-
provement as well as acknowledge the following limitations. First, the 
framework’s performance is intrinsically linked to the descriptive qual-
ity of the upstream LLM. While this shows a desirable “future-proof” 
scalability that benefits from advancements in language modeling, it 
also highlights a practical dependency that must be considered for de-
ployment. Second, our computational analysis reveals that while ZeSF 
achieves faster inference than the baseline, its absolute throughput may 
still challenge applications demanding extreme efficiency, such as real-
time processing on edge devices. These system-level limitations, along 
with specific performance challenges, directly inform our future re-
search agenda.

We specifically aim to address performance issues identified in our 
failure case analysis as shown in Fig. D.1, such as struggles with severe 
occlusion and high visual ambiguity. To this end, future work will ex-
plore lightweight attention mechanisms and knowledge distillation to 
build a more efficient model. This will reduce dependency on large-
scale models. Application-wise, we aim to deploy and refine ZeSF for 
real-world intelligent dining systems, explicitly tackling robustness to 
varied lighting conditions and occlusions. We also plan to extend the 
framework from detection to fine-grained ingredient recognition and 
quantity estimation. This is an essential step toward real-time nutritional 
analysis and truly intelligent food-centric ecosystems.
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Table A.1 
Additional reproducibility details from the configura-
tion.

 Aspect  Setting
 Backbone  ResNet-50
 Neck out channels  256
 Transformer Encoder Decoder layers  6
 Queries  900
 Normalization (Backbone)  FrozenBN
 Normalization (Neck)  GroupNorm
 Image format  RGB
 Input Channels  3
 Optimizer  AdamW
 Scheduler  MultiStepParam
 Milestones  90,000
 Iterations  30,000
 Batch size  8
 Eval / checkpoint period  2000 iters
 Gradient clipping  max_norm=0.1
 Model EMA  Enabled
 Contrastive temperature 𝜏 = 20.0
 NMS (postproc)  0.7

Table A.2 
Dataset statistics for all benchmarks. “Annotations” counts labeled bound-
ing boxes. Splits: UEC FOOD 256 (205/51), FOWA (184/44), MS COCO 
2014 (65/15), PASCAL VOC 2007+2012 (16/4).
 Datasets  Classes  Annotations  Images

 Seen  Unseen  Train  Test  Total
 UEC FOOD 256  205  51  28,429  20,452  5732  26,184
 FOWA  184  44  95,322  10,463  10,140  20,603
 MS COCO  65  15  548,745  62,300  10,815  73,115
 PASCAL VOC  16  4  52,090  10,728  10,834  21,562

Appendix A.  Experimental details

A.1.  Implementation details

Table A.1 provides additional reproducibility details from our active 
configuration. All settings are shared by both ZSD and GSD evaluations 
across every dataset, with no hyperparameter changes between modes.

A.2.  Dataset statistics

Table A.2 summarizes the statistics for all benchmarks used in our 
experiments.

Appendix B.  Additional ablation studies

B.1.  Detailed MSCIM ablations

We provide detailed ablation studies on the architectural compo-
nents of MSCIM. Table B.3 analyzes the contribution of each dila-
tion branch. Table B.4 evaluates different head allocation strategies for 
MSCIM.

B.2.  Semantic sensitivity discussion

This section provides a detailed analysis of the framework’s sensitiv-
ity to the quality of semantic descriptions, as summarized in the main 
paper. A key finding from our semantic source ablation (Section 4.5.4) 
is that the framework’s performance scales positively with the quality 
of LLM-generated descriptions. Upgrading from GPT-3.5-Turbo to GPT-
4o yields a significant GZSD HM improvement of 3.5% on UEC FOOD 
256 and 1.2% on FOWA. Interestingly, this scaling effect is not uniform: 
on the highly fine-grained UEC FOOD 256 dataset, GPT-3.5 descriptions 
improve ZSD (+1.9%) and GZSD Unseen (+1.3%) scores over the base-
line but reduce seen-class performance, leading to a slight HM decrease 

Table B.3 
Ablation study (%) on the contribution of different dilation branches within 
the MSCIM.
 Dataset  Different dilation  ZSD  GZSD

 Seen  Unseen  HM
 UEC FOOD 256  Without dilation 𝑑 = 1  27.7  19.8  26.7  22.8

 Without dilation 𝑑 = 2  26.7  17.9  26.2  21.2
 Without dilation 𝑑 = 3  28.5  20.4  26.9  23.2
 Ours  29.1  22.2  27.0  24.4

 FOWA  Without dilation 𝑑 = 1  8.7  85.6  7.7  14.1
 Without dilation 𝑑 = 2  8.4  89.6  6.8  12.6
 Without dilation 𝑑 = 3  9.2  89.9  8.0  14.8
 Ours  10.2  89.8  8.8  16.0

Table B.4 
Ablation study of head allocation variants for MSCIM on 
UEC FOOD 256: performance comparison (%) under ZSD 
and GZSD settings. ΔHM is the relative change in HM com-
pared to the best split (2,3,3).
 Head Split (𝑑 = 1, 2, 3)  ZSD  GZSD

 Seen  Unseen  HM
 Without MSCIM  27.6  19.0  26.8  22.2
 (2,2,4)  28.5  18.7  26.9  22.0
 (2,4,2)  28.9  20.2  27.0  23.1
 (4,2,2)  26.5  14.3  23.0  17.6
 (3,3,2)  26.8  16.3  25.9  20.0
 (2,3,3)  29.1  22.2  27.0  24.4

Table B.5 
Ablation study (%) on the impact of textual auxiliary information gen-
eration methods.
 Dataset  LLM Prompt  LLM Model  ZSD  GZSD

 Seen  Unseen  HM
 UEC FOOD 256  8  –  25.8  18.4  25.8  21.5

✓  GPT-3.5-Turbo  27.7  17.0  27.1  20.9
✓  GPT-4o  29.1  22.2  27.0  24.4

 FOWA  8  –  8.0  89.4  7.1  13.1
✓  GPT-3.5-Turbo  8.7  89.2  8.1  14.8
✓  GPT-4o  10.2  89.8  8.8  16.0

Table B.6 
Ablation study (%) on UEC FOOD 256 under ZSD and GZSD set-
tings: impact of different class description strategies. All vari-
ants share the same detector backbone, optimization schedule, 
and data augmentation, differing only in the class description 
strategy. CoOp results are the mean result over 3 random seeds.
 Method  ZSD  GZSD

 Seen  Unseen  HM
 Hand-crafted Prompts  24.2  18.6  24.9  21.3
 CoOp (Context tokens=8)  24.4  17.6  23.9  20.2
 CoOp (Context tokens=16)  25.4  18.2  24.4  20.8
 LLM-generated Prompts  29.1  22.2  27.0  24.4

(-0.6%). This suggests not architectural fragility, but a shifting trade-
off between seen-class discrimination and unseen-class generalization, 
depending on the granularity of semantic input. We interpret this as 
a characteristic of an architecture optimized to leverage rich semantic 
information. While simple hand-crafted prompts provide a robust but 
low-ceiling baseline, our framework is designed to parse complex de-
tails. Less discriminative descriptions, such as those from GPT-3.5 for 
nuanced food categories, may not fully activate the model’s special-
ized mechanisms, whereas the highly structured semantics from GPT-
4o align well with the design, resolving the trade-off and substantially 
lifting overall performance. This positions our approach as a scalable 
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and forward-compatible system that can readily benefit from future im-
provements in language models without architectural modification.

The practical viability of this approach is supported by two factors. 
First, the use of LLMs is a one-time, offline preprocessing step, elimi-
nating runtime costs or API dependencies during inference. Second, the 
increasing availability and power of capable open-source LLMs, such 
as Llama 3, significantly enhance the long-term accessibility of this 
methodology. While this study establishes the core principle, we ac-
knowledge that a comprehensive robustness analysis remains a broad 
undertaking. A systematic evaluation across a wider spectrum of open-
source models and the exploration of targeted prompt engineering tech-
niques to enhance adaptability in resource-constrained settings are valu-
able directions for future work.

B.3.  Semantic source ablations

To isolate the impact of textual auxiliary information, we compare 
three semantic sources: a hand-crafted prompt template (“a photo of 
a [class]”), GPT-3.5-Turbo generated descriptions, and GPT-4o gener-
ated descriptions. As shown in Table B.5, replacing the template with 
GPT-3.5-Turbo yields mixed but informative effects: on UEC FOOD 256, 
ZSD increases from 25.8% to 27.7% and the GZSD Unseen score rises 
from 25.8% to 27.1% (+1.3%), but the Seen score drops (18.4% →
17.0%, -1.4%) leading to a slight HM decrease (21.5% → 20.9%, -
0.6%). On FOWA, however, GPT-3.5-Turbo improves all open-set sen-
sitive metrics, including ZSD (8.0% → 8.7%, +0.7%), Unseen (7.1% 
→ 8.1%, +1.0%), and HM (13.1% → 14.8%, +1.7%). Upgrading to 
GPT-4o produces consistent gains across both datasets: for UEC FOOD 
256, HM increases to 24.4% (+2.9% vs. baseline; +3.5% vs. GPT-
3.5) with a notable Seen boost (18.4% → 22.2%, +3.8%) while retain-
ing the Unseen improvement (27.0%, +1.2% vs. baseline). For FOWA, 
GPT-4o lifts ZSD to 10.2% (+2.2%), Unseen to 8.8% (+1.7%), and 
HM to 16.0%(+2.9%). These results indicate a smooth scaling effect: 
stronger, richer descriptions alleviate the minor trade-off observed with 
GPT-3.5-Turbo and raise the overall performance ceiling without intro-
ducing instability.

Beyond comparing different LLM sources, we further validate the 
necessity of LLM-generated descriptions by comparing against CoOp, 
a representative prompt learning method. As shown in Table B.6, 
LLM-generated descriptions (29.1% ZSD, 24.4% GZSD HM) substan-
tially outperform both hand-crafted prompts (24.2% ZSD, 21.3% HM) 
and CoOp-learned prompts (25.4% ZSD, 20.8% HM with 16 tokens). 
Notably, CoOp performs worse than hand-crafted prompts in GZSD 
(-0.5%/-1.1%) on UEC FOODD 256, suggesting overfitting to seen 
classes. This confirms that explicit culinary knowledge from LLMs is 
necessary for ZSFD, and cannot be effectively replaced by learned con-
tinuous prompts.

Appendix C.  Additional quantitative analysis

C.1.  Comparison with open-vocabulary detectors

To validate our framework’s advantages over general-purpose vision-
language detectors, we compared with Grounding DINO, a strong open-
vocabulary detector. We evaluated Grounding DINO on FOWA under 
GZSD using zero-shot (pre-trained model with class names) and fine-
tune (continued training on seen classes for varying epochs following 
official configuration) settings, using identical training data for fair com-
parison. As shown in Table C.7, zero-shot Grounding DINO achieved 
5.6% HM (4.6% seen, 7.2% unseen), reflecting domain gap with gen-
eral datasets. Fine-tuning revealed catastrophic forgetting: at 5 epochs, 
seen mAP rose to 37.6% but unseen dropped to 2.5% (HM 4.69%); 
at 15 epochs, seen peaked at 63.6% but unseen collapsed to 1.3% 
(HM 2.55%), with no recovery at 25 epochs. This reveals that with-
out explicit semantic guidance, fine-tuning biases toward seen-class 
patterns and forgets pre-trained associations. In contrast, our method 

Table C.7 
Grounding DINO vs. our method on the FOWA dataset under the GZSD 
setting. Fine-tuning follows the official configuration (∼2.5k iterations 
per epoch; text encoder frozen). Extended fine-tuning increases seen mAP 
but degrades unseen mAP, reducing HM. The ZSD column is omitted as 
unseen-only filtering yields an identical unseen mAP.
 VLM Model  Traing Epochs  GZSD

 Seen  Unseen  HM
 Grounding DINO (Zero-Shot)  0  4.6  7.2  5.6
 Grounding DINO (Fine-tune)  5  37.6  2.5  4.69

 10  39.5  2.3  4.35
 15  63.6  1.3  2.55
 25  62.1  1.3  2.55

 Ours  12  89.8  8.8  16.0

Table C.8 
Class-wise AP (%) on selected challenging categories of the 
FOWA dataset. The 15 classes include conceptually similar 
pairs such as diced chicken with green pepper vs. pork with 
green pepper, general vs. specific instances such as millet con-
gee vs. congee, and different preparations of the same ingredi-
ent such as roast chicken wings vs. fried chicken wings. Seen 
and unseen classes are distinguished to assess generalization. 
The SA column reports the baseline performance, and the Ours 
column shows results from our method.
 Category  Type  SA  Ours
 diced chicken with green pepper  Seen  75.56  77.11
 pork with green pepper  Seen  92.71  94.25
 sour and spicy shredded potatoes  Seen  89.52  90.58
 stir fried shredded potato  Seen  62.55  62.19
 roast chicken wings  Seen  98.76  97.23
 fried chicken wings  Unseen  6.58  8.65
 congee  Unseen  7.02  8.49
 millet congee  Unseen  78.35  83.08
 seaweed and egg soup  Unseen  29.46  31.12
 seaweed soup  Unseen  14.39  15.98
 egg soup  Unseen  5.05  6.42
 celery tofu  Unseen  9.61  11.19
 green vegetables and mushrooms  Unseen  26.13  27.78
 fried mushrooms  Unseen  10.28  11.86
 apple  Unseen  6.25  7.72

achieved 16.0% HM (89.8% seen, 8.8% unseen) after 12 epochs—
6.3× higher than fine-tuned Grounding DINO and 6.8× higher unseen 
mAP, demonstrating effective seen-unseen balance. The performance 
gap stems from three designs: (1) LLM-Generated Semantic Scaffold-
ing—rich GPT-4o descriptions serve as explicit anchors preventing over-
fitting, whereas Grounding DINO relies solely on class names; (2) CT-
FEM’s Dual-Granularity Fusion—decomposing descriptions into global at-
tributes (𝑃𝐺) and local identifiers (𝑃𝐿) with fixed fusion (𝛾 = 0.6) main-
tains balance, whereas Grounding DINO’s single embedding becomes 
biased; (3) MSCIM’s Food-Centric Architecture—multi-dilation pathways 
capture food’s compositional structure optimally. This demonstrates 
that general-purpose open-vocabulary detectors face fundamental chal-
lenges in fine-grained ZSFD, which our framework overcomes through 
domain-optimized design and explicit semantic guidance.

C.2.  Class-wise AP analysis on challenging categories

To better understand the model’s behavior on challenging cases, we 
report class-wise mAP for 15 representative categories from the FOWA 
dataset (Table C.8). These categories were selected to highlight three 
types of difficulty: (1) pairs with high conceptual similarity (e.g., diced 
chicken with green pepper vs. pork with green pepper), (2) general 
vs. specific instances (e.g., millet congee vs. congee), and (3) different 
preparations of the same ingredient (e.g., roast vs. fried chicken wings). 
We distinguish between seen classes (present in training) and unseen 
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Table C.9 
Complexity analysis comparing our method with baselines on the UEC FOOD 256. Inference metrics measured on a 
single NVIDIA GeForce RTX 2080 Ti GPU (batch size = 1).
 Method Group  Method  #Params (M)  FLOPs (G)  FPS  VRAM (GB)  ZSD  GZSD

 Seen  Unseen  HM
 Generating-based  RRFS  60.2  538.8  14.4  3.5  23.6  20.1  22.9  21.4

 ZSFDet  60.5  539.4  14.7  3.5  27.3  21.9  26.1  23.8
 Mapping-based  BLC  27.0  334.5  6.0  6.1  19.2  20.5  15.2  17.5

 SA  51.2  403.1  2.7  3.4  24.2  18.6  24.9  21.3
 Ours  51.5  412.7  3.5  3.4  29.1  22.2  27.0  24.4

classes (zero-shot) to evaluate generalization. The table compares our 
method (Ours) with the baseline SA, showing that while performance 
is strong on seen classes, unseen categories remain more challenging, 
reflecting the inherent difficulty of fine-grained ZSFD.

C.3.  Computational cost analysis

This section provides a detailed breakdown of the computational cost 
analysis summarized in Section 4.6. Table C.9 presents a comprehen-
sive comparison of parameters, FLOPs, and performance metrics across 
different methods. A direct comparison with the strongest mapping-
based baseline, SA, reveals that the substantial accuracy gains of ZeSF 
are achieved with only a marginal increase in computational overhead. 
Specifically, ZeSF adds only 0.3M parameters and 9.6 GFLOPs but de-
livers a significant +3.1% improvement in HM. This indicates the high 
efficiency of our proposed modules, a conclusion further supported by 
performance density metrics. As shown in Table C.9, ZeSF exhibits supe-
rior HM-per-FLOP (0.0591 vs. 0.0529) and HM-per-parameter (0.474 vs. 
0.416) ratios compared to SA. Furthermore, the practical inference met-
rics highlight the efficiency of our architectural design. Despite the mi-
nor increase in theoretical FLOPs, ZeSF’s inference speed is notably 
faster than SA’s (3.5 FPS vs. 2.7 FPS), suggesting that the sparse, non-
uniform structure of our MSCIM maps very effectively to modern GPU 
architectures. The peak VRAM usage remains identical at 3.4 GB, indi-
cating no significant memory overhead.

This favorable efficiency profile also holds when comparing ZeSF 
to generative methods. As shown in Table C.9, our model uses fewer 
parameters ( 51.5M vs.  60M) and a significantly lower theoretical 
computational load ( 413 GFLOPs vs.  539 GFLOPs) than both RRFS 
and ZSFDet, while still achieving a higher HM. Although the genera-
tive methods exhibit a higher raw FPS, our framework delivers the best 
overall balance between top-tier performance (HM) and computational 
cost (Params/FLOPs). Moreover, this efficiency advantage extends to the 
training process. Generative approaches often rely on complex, multi-
stage pipelines (e.g., pre-training on seen classes, training a feature gen-
erator, and then fine-tuning a classifier), which can be cumbersome. In 
contrast, our framework is trained end-to-end in a single, unified stage, 
significantly simplifying the development workflow. This finding rein-
forces our central argument that targeted architectural enhancements 
are a more efficient path to superior performance than computationally 
heavy feature synthesis. 

Appendix D.  Qualitative analysis

D.1.  Failure case analysis

To better understand the limitations of our framework, we analyze 
representative failure cases on the FOWA and UEC FOOD 256 datasets 
(Fig. D.1). Two main error types are observed. The first is misclassifica-
tion due to high visual similarity, which occurs when different classes 
share attributes such as color, shape, or texture. For example, a green 
apple may be misclassified as egg due to its uniform surface and reflec-
tion under specific lighting, fried potato slices may be confused with 
thousand-leaf tofu because of their similar shape, and a complex soup 
may be mistaken for green curry due to overlapping color cues from veg-
etables and broth. The second type is missed detections in cluttered or 
occluded scenes, where the model sometimes fails to detect small or par-
tially hidden items, such as tofu in a dense dish. These cases highlight 
the persistent challenges of fine-grained recognition, where subtle at-
tribute differences and scene complexity play a critical role. Addressing 
these issues will be an important direction for future work, such as in-
corporating lightweight attention mechanisms or leveraging knowledge 
distillation to improve robustness.

D.2.  Grad-CAM visualizations

We use Grad-CAM to visualize the attention patterns of our model 
and the baseline, as shown in Fig. D.2. These visualizations provide qual-
itative evidence that our complete framework learns more discrimina-
tive attention patterns compared to the baseline, indicating the effec-
tiveness of our architectural specialization when integrated with rich 
semantics.

Supplementary material

Supplementary material associated with this article can be found in 
the online version at 10.1016/j.patcog.2025.112928. 
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Fig. D.1. Representative failure cases on the FOWA (top row) and UEC FOOD 256 (bottom row) datasets. Two main error types are observed: (1) misclassification 
caused by high visual similarity in color, shape, or texture (e.g., fried potato slices vs. thousand-leaf tofu), and (2) missed detections in cluttered or occluded scenes 
(e.g., undetected tofu).

Fig. D.2. Grad-CAM visualizations of our model and the baseline on the UEC FOOD 256 and FOWA datasets. The first column shows the original images, the second 
column displays the results of the baseline model (SA), and the third column presents the results of our method.
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