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Zero-Shot Detection, the ability to detect novel objects without training samples, exhibits immense potential in
an ever-changing world, particularly in scenarios requiring the identification of emerging categories. However,
effectively applying ZSD to fine-grained domains, characterized by high inter-class similarity and notable intra-
class diversity, remains a significant challenge. This is particularly pronounced in the food domain, where the
intricate nature of food attributes—notably the pervasive visual ambiguity among related culinary categories and
the extensive spectrum of appearances within each food category—severely constrains the performance of exist-
ing methods. To address these specific challenges in the food domain, we introduce Zero-Shot Food Detection with
Semantic Space and Feature Fusion (ZeSF), a novel framework tailored for Zero-Shot Food Detection. ZeSF inte-
grates two key modules: (1) Multi-Scale Context Integration Module (MSCIM) that employs dilated convolutions
for hierarchical feature extraction and adaptive multi-scale fusion to capture subtle, fine-grained visual distinc-
tions; and (2) Contextual Text Feature Enhancement Module (CTFEM) that leverages Large Language Models
to generate semantically rich textual embeddings, encompassing both global attributes and discriminative local
descriptors. Critically, a cross-modal alignment further harmonizes visual and textual features. Comprehensive
evaluations on the UEC FOOD 256 and Food Objects With Attributes (FOWA) datasets affirm ZeSF’s superiority,
achieving significant improvements in the Harmonic Mean for the Generalized ZSD setting. Crucially, we further
validate the framework’s generalization capability on the MS COCO and PASCAL VOC benchmarks, where it
again outperforms strong baselines. The source code will be publicly available upon publication.

1. Introduction

Food computing is an interdisciplinary field. It merges computer vi-
sion and food science. This field plays an vital role in analyzing and un-
derstanding food-related visual data [1,2]. With the aid of multimedia
technologies, food computing now supports many applications. These
applications include food safety monitoring [3], intelligent nutritional
assessment [4], and personalized dietary guidance systems [5]. Among
these, food detection is a core technology. It involves localizing and
identifying specific food items in images. This capability enables practi-
cal systems such as automated retail checkout systems [6]. However, the
vast and ever-evolving variety of food items in the real world presents
a significant challenge. Traditional supervised detection models strug-
gle with scalability and adaptability to emerging food categories due to
high annotation costs and limited generalization [7].

* Corresponding author.

Zero-Shot Detection (ZSD) enables the detection of unseen cate-
gories through knowledge transfer [8]. However, early methods rely-
ing on coarse semantics prove insufficient for the fine-grained nature
of food [9]. Food objects present three primary challenges, as shown in
Fig. 1. These challenges differ from those of rigid general objects that
have consistent structural features. First, they exhibit high inter-class
similarity, where different dishes share overlapping visual attributes
(e.g., “braised spareribs” vs. “sweet and sour pork ribs”). Second, such
dishes show high intra-class diversity, as the same dish varies markedly
with preparation (e.g., “fried chicken steak”). Third, there is a lack of
rigid structural constraints, leading to high compositional complexity
and non-rigidity.

These factors collectively demand an architecture capable of process-
ing multi-scale compositional features and domain-specific semantics.
Generic ZSD frameworks do not adequately meet these requirements.
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Fig. 1. Fine-grained visual challenges in ZSFD versus general object detection. Left: food objects exhibit high inter-class similarity (e.g., different tofu/spareribs
dishes share color, shape, material). Right: food objects show high intra-class diversity (e.g., fried chicken steak varies by cooking style, plating). In contrast, general
objects (e.g., person/skateboard) possess distinctive structural features that are consistent and discriminative.

In Generalized ZSD (GZSD), where seen and unseen categories coex-
ist at inference, these difficulties are further exacerbated. While recent
advancements in Large Language Models (LLMs) can provide richer se-
mantic information [10]. However, effectively integrating them to re-
solve extreme visual-semantic ambiguities in the food domain remains
an open challenge.

To this end, we propose Zero-Shot Food Detection with Seman-
tic Space and Feature Fusion (ZeSF), a novel Zero-Shot Food De-
tection (ZSFD) framework. It features a purpose-built, dual-pathway
“global-local” architecture. Our Multi-Scale Context Integration Module
(MSCIM) is motivated by the compositional nature of food. It captures
fine-grained ingredient details and balances local and global dish struc-
tures. Concurrently, the Contextual Text Feature Enhancement Module
(CTFEM) mitigates high inter-class similarity. It achieves this by struc-
turing LLM-generated descriptions into multi-granular representations,
enabling precise discrimination. We posit that addressing these food-
specific challenges will foster robust, generalizable principles. The core
novelty of this work lies not in isolated components, but in a holistic
design that tackles the dual challenges of fine-grained ZSFD via this
synergistic architecture. Our main contributions are summarized as fol-
lows:

1. We propose ZeSF, a novel framework that aligns visual and textual
features in a shared semantic space, ensuring strong generalization
to unseen food categories while maintaining robust performance on
seen ones.

2. To address the dual challenges of visual ambiguity and seman-
tic overlap in food detection, we introduce two complementary
modules. The MSCIM enhances visual representations by captur-
ing both local details and global dish structure. Concurrently, the
CTFEM structures culinary descriptions generated by LLMs into
multi-granular embeddings. Together, these modules strengthen
cross-modal alignment and improve discrimination under inter-class
similarity and intra-class diversity.

3. Extensive experiments on UEC FOOD 256 and Food Objects With At-
tributes (FOWA) demonstrate superior ZSD and GZSD performance,
while additional evaluations on MS COCO and PASCAL VOC confirm
the effectiveness and efficiency of our integration strategy beyond
the food domain.

The remainder of this paper is structured as follows: Section 2 re-
views related works in ZSD and food computing. Section 3 details the
architecture of the proposed ZeSF framework. Section 4 describes the
experimental setup and presents the results and analysis. Finally, Sec-
tion 5 concludes this work.

2. Related work
2.1. Zero-shot learning

Zero-Shot Learning (ZSL) recognizes unseen categories by aligning
visual features with auxiliary semantics [11]. Early methods learned
shared compatibility spaces with class prototypes [12] or defined at-
tribute subspaces [13]. Recent Transformer-based approaches intensify
visual-semantic fusion. Examples include progressive semantic injec-
tion to mitigate drift [14] and part-level grounding refinement [15].
Dynamic unary convolution in Transformers further enables adaptive
receptive-field modulation [16]. This mechanism aligns closely with the
multi-scale context modeling in our MSCIM. A parameter-efficient fine-
tuning paradigm for Vision-Language Models (VLMs) is also relevant to
the textual adaptation in CTFEM [17]. Despite these advances, a recent
survey on fine-grained ZSL emphasizes that key challenges remain unre-
solved. These include subtle inter-class differences and high intra-class
diversity [18]. Our work addresses these challenges in a detection set-
ting. We mine structured, multi-attribute culinary descriptions from an
LLM. We then couple them with a multi-dilation enhancement module.
This strategy bridges semantic richness and spatial discriminability for
fine-grained food detection.

2.2. Zero-shot object detection

Extending ZSL to localization tasks, ZSD methods are categorized
into typically mapping-based [8,9,19] and generative-based [20,21] ap-
proaches. Mapping-based methods establish direct visual-semantic rela-
tionships. For instance, HRE was proposed to combine label and seman-
tic embeddings [19]. Meanwhile, CZSD [9] enhanced unseen category
detection through semantic-guided contrastive learning. SA [8] further
advanced this by integrating class-adaptive contrastive loss into DEtec-
tion TRansformer (DETR) [22] for better alignment. Generative methods
like GTNet [21] synthesize unseen features via GANSs, or utilize synthetic
data [23]. A key limitation of existing approaches is the seen-category
bias. Models often misclassify unseen objects as seen categories, thus
suppressing unseen performance. Our mapping-based approach allevi-
ates this bias and addresses partial observation. This achieves a more
balanced performance between seen and unseen categories, which is
crucial for complex food data.

2.3. Zero-shot food detection
ZSFD targets the challenging task of localizing and identifying un-

seen food categories, which is complicated by fine-grained attributes
and high intra-class diversity [7]. The predominant approach in this area
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Fig. 2. Overall framework of our proposed ZeSF. An input image is processed by a backbone and the MSCIM-Enhanced Transformer Encoder to obtain multi-scale
visual features. In parallel, CTFEM uses LLM-derived textual descriptions to form global and local semantic embeddings, which are then aligned with visual features
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Fig. 3. Pipeline of the MSCIM-Enhanced Transformer Encoder, where an MSCIM is prepended to each of the N layers to enrich features for the standard MSDeform

Attention.

relies on generative models to synthesize visual features for these unseen
classes [7,24]. However, these methods struggle to produce authentic
and discriminative synthetic features. In contrast, this paper proposes
ZeSF, a mapping-based framework that circumvents feature generation.
ZeSF directly aligns robust visual representations with rich semantic de-
scriptions. Specifically, it leverages our multi-scale architecture to cap-
ture visual details and LLMs to generate comprehensive semantic cues.
This direct alignment strategy offers a more effective paradigm for re-
solving the visual and semantic ambiguities inherent in food detection.

3. Method
3.1. Problem formulation

This study addresses the task of ZSFD (Zero-Shot Food Detection),
aiming to accurately detect instances of novel food categories not seen
during training. Given a training dataset D containing images I; with
object annotations (b;, y;) for N seen categories Y, our objective is to
train a model capable of detecting objects from both Y, and a disjoint set
of N, unseen categories Y, (¥, n Y, = ). Crucially, no training data is
available for Y,. To facilitate the detection of these unseen classes, we
leverage semantic descriptions W = W, U W, for all categories, where
W, € RNsxd and W, € R¥v*? denote the d-dimensional semantic em-
beddings for seen and unseen categories respectively. These descrip-
tions, potentially generated by LLMs and processed by VLMs, enable
aligning visual features with semantic representations for generaliza-
tion. Evaluation is conducted on a test dataset D, comprising objects
from Y, U Y,. We consider two standard settings: ZSD, focused on de-
tecting only Y, objects, and GZSD (Generalized Zero-Shot Detection),
which requires detecting objects from Y, U Y, and is more challenging
as it necessitates discrimination between seen and unseen classes during
inference.

3.2. Scaling contextual understanding with transformers

As shown in Fig. 3, the MSCIM-Enhanced Transformer Encoder pro-
cesses the input feature map X € REXC*HXW through N stacked layers,

where B is the batch size, C the channel dimension, and H, W the spatial
height and width. We adopt a Deformable DETR encoder and prepend
a lightweight MSCIM (Multi-Scale Context Integration Module) to each
encoder layer. As illustrated in Fig. 4, MSCIM acts as a pre-attention en-
hancer that produces a multi-dilation feature M, which is then fed into
the standard MSDeform Attention [25]. Importantly, MSDeform Atten-
tion itself remains unchanged: its reference points, sampling offsets, and
attention weights are learned independently of MSCIM.

MSCIM addresses the fine-grained yet cluttered statistics of images
by implementing a SWDA-style sparse local self-attention operator [26]
along three dilation pathways (d=1, 2, 3). For a query at (i, j), keys/val-
ues are sampled from:

(") =i+pxd, j =j+qxd}, -5 <pqg<7, ¢
and the output is computed via the scaled dot-product:
0,KT
Vij = Softmax Y Vijds (2)
Vdy

where d, is the key dimension. As shown in Fig. 4 right, the pathways
cover complementary ranges: d=1 corresponds to local micro-texture,
d=2 captures structural-global cues, and d=3 represents contextual-
global layout. To best leverage these pathways under a fixed 8-head
budget, we adopt a non-uniform allocation of 2,3,3. With C =256 and
h = 8, each head has d;, = 32 channels, yielding per-path channel sizes
of [64,96,96]. This allocation emphasizes structural and contextual cues
with three heads each for d =2 and d = 3, while assigning two heads
to fine micro-texture at d = 1. Ablation studies validate this design as
achieving the best seen-unseen trade-off (Table B.4).

Finally, the outputs from all eight dilated attention heads, L,, ..., Lg,
are integrated to form the MSCIM output M via:
M =W, -Concat[L, L,, ..., Lg]+ bg, 3)

where L, € RBXXHXW denotes the per-head feature map, h=8 is the to-
tal number of heads, and d,=C/h is the head dimension. We view W, €
REXC with bias b, € R as a position-wise linear projection, equivalent
to a 1x1 convolution, shared across spatial locations. The concatenation
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pathways (d = 1,2,3) are designed to capture complementary features ranging from local micro-textures to global contextual layout.

is performed along the channel/head axis, producing M € REXCxHXW
with the same spatial and channel dimensions as the input feature, now
enriched with integrated multi-scale information. No additional normal-
ization or gating is applied, keeping the enhancement lightweight. The
feature M is then passed to the subsequent MSDeform Attention within
the same encoder layer as shown in Fig. 4. Consequently, the only di-
visibility requirement is C mod A = 0, with C=256 and h=8 in our setup,
and C does not need to be divisible by the number of dilation pathways,
which is three. Implementation details are provided in Section 4.1.3.

3.3. Synthesizing context and detail for semantic refinement

Traditional ZSFD methods often rely on simplified text descriptions
like “a photo of {class name}”. This overlooks the rich visual and de-
tailed characteristics of food items, crucial for distinguishing similar
dishes. To capture these fine-grained details and enhance the model’s
semantic understanding, we incorporate LLM-enriched descriptions and
introduce CTFEM (Contextual Text Feature Enhancement Module) to
structurally fuse them.

3.3.1. LLM-based semantic description generation

To create powerful semantic representations that move beyond sim-
ple class labels, we utilized a LLM, GPT-4o, to generate detailed textual
descriptions for each food category. These generated descriptions are de-
signed to be rich and informative, capturing a wide array of observable
characteristics such as key ingredients, colors, textures, and common
preparation styles. For example, the category “braised spareribs” can be
described as: “Tender pork ribs slow-cooked in a savory soy-based sauce
until caramelized, with a glossy dark brown glaze, chunks of highly ten-
der meat, often accompanied by onions or ginger.” This provides a far
deeper semantic understanding than the class name alone.

The high quality of these LLM-generated descriptions allows them
to be used directly to create more informative semantic vectors with-
out any manual post-processing. This enhanced semantic information is
critical for enabling the model to accurately distinguish fine-grained cat-
egories and recognize novel food items. A detailed analysis of the impact
of different text generation methods is presented in Section 4.5.4.

3.3.2. Contextual textual feature enhancement module

Effectively leveraging detailed semantic descriptions for ZSFD re-
quires prioritizing relevant cues. While the core category name, serv-
ing as a local feature, is vital for identification, the descriptive content,
serving as a global feature, provides crucial details for fine-grained dis-
tinction. To balance these aspects, we propose a dual-granularity global-
local semantic fusion strategy within the CTFEM to generate enhanced
textual representations.

As illustrated in Fig. 2, CTFEM integrates global and local textual
features by extracting them from the LLM-generated descriptions.

Firstly, the global textual feature P is extracted from the entire de-
tailed description D using the pre-trained CLIP text encoder wp, as it
is known to produce effective textual embeddings aligned with visual

features:

P = werp(D). &

Secondly, to obtain the local textual feature P;, we utilize the CLIP text
encoder on the core category name c/s:

P; = wopp(cls). (5)

The category name c/s is precisely defined as the primary noun phrase
directly matching the predefined class label from our dataset used in
the LLM prompt, ensuring P; strictly represents the intended category’s
embedding. Finally, the enhanced global-local semantic vector P is a
weighted sum of P; and P;:

P=yP+(1=7)P. ©

Here, y € [0, 1] is a coefficient balancing global and local contributions,
fixed once and reused on a validation set. This global-local weighting
effectively combines rich contextual details with the precise category
identity, yielding a more comprehensive and discriminative representa-
tion for diverse and visually similar food items. We opt for this straight-
forward linear combination as it provides an effective and interpretable
way to balance the two feature types without introducing additional
network parameters or risking overfitting.

A fixed, parameter-free fusion with y = 0.6 is used across all datasets.
We found this simple approach avoids the overfitting observed with
learnable gating, preserves the interpretability of global vs. local roles,
and enables a “semantic-capacity amplifier” effect when using rich LLM
descriptions.

3.4. Loss function

Our composite loss function is a weighted sum of three components
designed to address classification, localization, and zero-shot knowledge
transfer:

L = AgsLs + AbboxLbbox + AconLeons ()

where the localization term is Lypox = diouLiou + AgiouLgiou-

The loss components are weighted to reflect the challenges of fine-
grained food detection. First, we use focal loss L s to handle class im-
balance, with 4., = 1.0. Second, for localization, we combine IoU and
GIoU to address deformable food items: GIoU supplies stable gradients
for low-overlap boxes in early training, while IoU refines the fit. We
assign higher weights, j,, = 5.0 and Agjo, = 2.0, to prioritize accurate
cropping of ingredients and context. Finally, to enable generalization,
we incorporate the class-aware contrastive loss £.,, from [8] with a
small weight of .,, = 0.05, which gently guides visual-semantic align-
ment for unseen classes without over-constraining feature variance or
harming seen-class performance.



X. Wang et al

Table 1
Performance comparison (%) on UEC FOOD 256 under ZSD and
GZSD settings. 1 indicates methods based on generative models.

Metric Method ZSD GZSD
Seen Unseen HM
Recall@100 PL [32] 56.5 53.2 40.4 46.0
BLC [33] 58.9 55.3 43.8 48.9
CZSD [9] 60.7 57.6 45.5 50.8
SU7T [34] 61.9 52.5 52.8 52.6
RRFST [35] 64.8 54.9 55.1 55.0
SeeDS+t [7] 74.0 55.2 61.4 58.1
ZSFDet} [24] 74.4 57.0 61.8 59.3
SA [8] 92.9 71.2 86.9 78.3
Ours 93.7 86.9 86.4 86.7
mAP PL [32] 14.5 18.9 11.6 14.4
BLC [33] 19.2 20.5 15.2 17.5
CZSD [9] 22.0 20.8 16.2 18.2
SU7T [34] 22.4 19.3 20.1 19.7
RRFST [35] 23.6 20.1 22.9 21.4
SeeDSt [7] 27.1 20.2 26.0 22.7
ZSFDett [24] 27.3 21.9 26.1 23.8
SA [8] 24.2 18.6 24.9 21.3
Ours 29.1 22.2 27.0 24.4

4. Experiments
4.1. Experimental settings

4.1.1. Benchmark datasets

We evaluate our framework on two fine-grained food datasets: UEC
FOOD 256 [27] and FOWA [24]. To validate the generalization, we also
report results on the large-scale MS COCO [28] and PASCAL VOC [29].
Table A.2 summarizes the statistics and class splits for all datasets.

4.1.2. Evaluation metrics

We follow standard ZSD (Zero-Shot Detection) and GZSD (Gener-
alized Zero-Shot Detection) detection protocols with a disjoint split of
classes into seen ());) and unseen (¥,). In ZSD we report the unseen
mean Average Precision (mAP) at IoU 0.5 (mAP on JY,). In GZSD we
report seen mAP (S), unseen mAP (U), and their Harmonic Mean (HM,
HM = ;STZ) as the primary balanced metric. For UEC FOOD 256, FOWA
and PASCAL VOC, we report mAP and Recall@100 at IoU 0.5. For MS
COCO, we additionally report Recall@100 at IoU 0.4 and 0.6 to probe
localization robustness.

4.1.3. Implementation details

We use a ResNet-50 backbone [30] for all datasets (Swin-T [31]
for PASCAL VOC). Training adopts multi-scale resizing. Specifically, the
shorter side ranges from 480 to 800 pixels, and the longer side is capped
at 1333 pixels. During inference, the shorter side is fixed at 800 pixels.
Features are channel-mapped to C = 256 for an 8-head Transformer. For
the MSCIM (Multi-Scale Context Integration Module), we apply a non-
uniform head split of 2, 3, 3 (d =1,2,3). Similarly, the CTFEM (Con-
textual Text Feature Enhancement Module) uses a fixed weight y = 0.6.
Complete hyperparameters, including augmentation, optimizer, and loss
weights, are detailed in Appendix Table A.1.

4.2. Comparisons with the state-of-the-art method

4.2.1. Results on UEC FOOD 256

Table 1 presents the performance comparison on UEC FOOD 256.
Compared to the mapping-based baseline SA, our method improves the
ZSD mAP from 24.2% to 29.1% and the GZSD HM from 21.3% to
24.4%. Furthermore, ZeSF establishes a favorable balance against gen-
erative methods such as ZSFDet. While achieving a higher Unseen mAP,
our model also boosts the Seen Recall@100 from 57.0 % to 86.9 %. This
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Table 2
Performance comparison (%) on FOWA under ZSD and GZSD set-
tings. f indicates methods based on generative models.

Metric Method ZSD Gz8b
Seen Unseen HM

ConSE [36] 397 580 381 46.4
PL [32] 401 539 396 457
BLC [33] 412 553 405 46.8
CZSD [9] 480 861 44.8 58.9
SUY [34] 453 823 441 57.4

Recall@100  pppsi [35) 488 866 47.6 61.4
SeeDS* [7] 529 87.0 49.8 633
ZSFDett [24] 53.5 87.0  50.1 63.6
SA [8] 89.3 975 655 78.3
Ours 90.9 968 73.9 83.8
ConSE [36] 08 543 07 1.4
PL [32] 1.0 508 0.7 14
BLC [33] 11 511 09 1.8
CZSD [9] 40 812 21 4.1
SUY [34] 39 791 23 45

mAP
RRFS# [35] 43 827 27 5.2
SeeDS* [7] 59 828 35 6.7
ZSFDett [24] 6.1 828 3.6 6.9
SA [8] 77 905 54 10.1
Ours 102 898 88 16.0

results in a higher HM, indicating that our approach improves general-
ization without compromising performance on seen classes.

4.2.2. Results on FOWA

Table 2 presents the results on the FOWA dataset, where ZeSF out-
performs baselines including SA, ZSFDet, and CZSD. While SA achieves a
higher seen-class mAP, our method improves unseen-class performance
from 5.4 % to 8.8 %. This results in a higher GZSD HM of 16.0 % com-
pared to 10.1 %, indicating a more robust generalized model.

Compared to generative methods such as ZSFDet, our direct-mapping
approach achieves a higher HM score of 16.0 % compared to 6.9 %. This
suggests advantages in feature quality by avoiding low-fidelity synthe-
sis. Fig. 6 visually corroborates this claim, where ZeSF yields compact,
well-separated clusters for unseen classes on UEC FOOD 256 and FOWA,
unlike the scattered overlaps observed in SA.

4.2.3. Multi-domain validation: MS COCO & PASCAL VOC

Although ZeSF is food-centric, we evaluate its transferability to gen-
eral objects to validate the broader applicability of its principles, namely
multi-scale visual aggregation and dual-granularity semantic fusion.
These experiments indicate generalization without claiming universal
superiority.

Evaluations on MS COCO (with 48/17 and 65/15 splits) and PAS-
CAL VOC (with a 16/4 split) follow standard ZSD protocols. No hyper-
parameters or architecture were retuned. Only class descriptions were
regenerated using the same offline LLM pipeline as for food datasets.

Tables 3-5 present the results. On MS COCO ZSD, ZeSF achieves
22.0% and 24.3 % mAP on the 48/17 and 65/15 splits. This represents
improvements of +2.5% and +0.3 % over SA. For GZSD, it yields the
highest HM for Recall@100, 66.1 % and 69.2 %, and for mAP, 22.8%
and 27.8%, showing balanced seen-unseen calibration. On PASCAL
VOC, ZeSF attains 69.6 % ZSD mAP and 57.0 % GZSD HM. It boosts Seen
from 64.8% to 67.2% while maintaining Unseen at 49.5 % compared
to 49.3 %.

While effective, these gains are notably smaller than those on food
datasets. For example, the GZSD HM improvements are +0.1% and
+0.9% on COCO and +1.0% on VOC, compared to +3.1% and
+5.9 % on food datasets. This empirically validates the food-centric op-
timization. Specifically, MSCIM’s multi-dilation excels on food’s compo-
sitional hierarchy but offers limited extra value for rigid general objects.
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Table 3
Performance comparison (%) on MS COCO under ZSD setting. i indicates methods based on generative models.
Method Split Recall@100 mAP Split Recall@100 mAP
IoU=0.4 IoU=0.5 IoU=0.6 IoU=0.5 IoU=0.4 IoU=0.5 IoU=0.6 IoU=0.5
CZSD [9] 48/17 56.1 52.4 47.2 12.5 65/15 62.3 59.5 55.1 18.6
SUT [34] 48/17 - - - - 65/15 54.4 54.0 47.0 19.0
PL [32] 48/17 - 43.5 - 65/15 - 37.7 - 12.4
BLC [33] 48/17 51.3 48.8 45.0 10.6 65/15 57.2 54.7 51.2 14.7
RRFS+t [35] 48/17 58.1 53.5 47.9 13.4 65/15 65.3 62.3 55.9 19.8
TCB [37] 48/17 55.5 52.4 48.1 11.4 65/15 62.5 59.9 55.1 13.8
SeeDSt [7] 48/17 59.2 55.3 48.5 14.0 65/15 66.4 63.8 56.5 20.1
ZSFDetf [24] 48/17 58.6 54.7 48.3 14.0 65/15 66.5 64.2 56.7 20.3
SA [8] 48/17 76.7 73.0 68.8 19.5 65/15 88.0 85.3 81.9 24.0
M-RRFST [20] 48/17 64.0 60.9 55.5 65/15 68.6 65.4 59.1 20.3
Ours 48/17 86.3 82.9 79.0 22.0 65/15 89.1 86.5 83.4 24.3
Table 4
Performance comparison (%) on MS COCO under GZSD settings. { indicates methods based on generative models.
Method Split Recall@100 mAP Split Recall@100 mAP
Seen Unseen HM Seen Unseen HM Seen Unseen HM Seen Unseen HM
CZSD [9] 48/17 65.7 52.4 58.3 45.1 6.3 111 65/15 62.9 58.6 60.7 40.2 16.5 23.4
SUT [34] 48/17 - - - - - - 65/15 57.7 53.9 55.7 36.9 19.0 25.1
PL [32] 48/17 38.2 26.3 3.2 35.9 4.1 7.4 65/15 36.4 37.2 36.8 34.1 12.4 18.2
BLC [33] 48/17 57.6 46.4 51.4 42.1 4.5 8.1 65/15 56.4 51.2 53.9 36.0 13.1 19.2
RRFST [35] 48/17 59.7 58.8 59.2 42.3 13.4 20.4 65/15 58.6 61.8 60.2 37.4 19.8 26.0
TCB [37] 48/17 71.9 52.4 60.6 47.3 4.9 8.8 65/15 69.3 59.8 64.2 39.9 13.8 20.5
SeeDSt [7] 48/17 60.1 60.8 60.5 42.5 14.5 21.6 65/15 59.3 62.5 60.9 37.5 20.3 26.3
ZSFDett [24] 48/17 60.1 60.7 60.4 42.5 14.3 21.4 65/15 59.3 63.1 61.1 37.5 20.5 26.5
SA [8] 48/17 78.4 49.7 60.8 34.0 17.0 22.7 65/15 79.7 55.8 65.7 35.5 21.7 26.9
M-RRFSt [20] 48/17 63.3 60.1 61.7 42.7 15.0 22.2 65/15 67.0 63.7 65.3 37.9 19.8 26.0
Ours 48/17 86.6 53.4 66.1 51.5 14.6 22.8 65/15 81.5 60.2 69.2 37.0 22.3 27.8
Table 5

Performance comparison (%) on PASCAL VOC un-
der ZSD and GZSD settings. 1 indicates methods
based on generative models.

Method ZSD GZSD

Seen Unseen HM
ConSE 52.1 59.3 22.3 32.4
PL [32] 62.1 - - -
BLC [33] 55.2 58.2 22.9 32.9
SUYT [34] 64.9 - - -
CZSD [9] 65.7 63.2 46.5 53.8
RRFST [35] 65.5 47.1 49.1 48.1
SeeDSt [7] 68.9 48.5 50.6 49.5
ZSFDett [24] 69.2 48.5 50.8 49.6
M-RRFS7 [20] 67.0 48.5 52.6 50.5
TCB [37] 59.3 61.0 29.8 40.0
SA [8] 68.7 64.8 49.3 56.0
Ours 69.6 67.2 49.5 57.0

Similarly, CTFEM’s fusion is particularly effective with culinary seman-
tics but less so without preparation-induced diversity.

4.2.4. Qualitative evaluation

Fig. 5 provides a qualitative comparison against the baseline SA and
a representative generative method RRFS. It illustrates the generaliza-
tion capability of our method on UEC FOOD 256 and FOWA, highlight-
ing our framework’s effectiveness in challenging fine-grained scenarios.

A primary observation is our model’s ability to detect unseen cate-
gories in red bounding boxes, which baseline methods often miss. For
example, in the first row of UEC FOOD 256, our method accurately local-
izes and classifies the unseen dish “dry curry”. In contrast, the baseline
incorrectly predicts it as “fried rice.” On FOWA, our approach detects
multiple unseen food items within complex tray settings, such as “celery
tofu” in the third row. These items are overlooked by the baseline.

Furthermore, beyond just detecting unseen classes, our method also
indicates higher confidence and more precise localization for seen cat-
egories. As shown in the fourth and fifth rows, our model’s bounding
boxes are often tighter and more accurately placed compared to the SA
and RRFS. These results clearly show that our framework enhances ZSD
capabilities, leading to more reliable food recognition.

4.3. Comparison with open-vocabulary detector

To validate our framework’s advantages over general-purpose vision-
language detectors, we compare against Grounding DINO [38]. As
shown in Table C.7, zero-shot Grounding DINO achieves 5.6 % HM
on FOWA. Fine-tuning on seen classes improves seen mAP to 63.6 %
after 15 epochs but negatively impacts unseen mAP, dropping from
7.2% to 1.3%. This reduces HM to 2.55%. In contrast, our method
achieves 16.0% HM with balanced performance, reaching 89.8 %
on seen classes and 8.8% on unseen classes. This validates that
fine-grained ZSFD requires domain-optimized architectures such as
MSCIM and CTFEM, together with explicit semantic guidance from
LLM-generated descriptions, which prevent the forgetting observed in
Grounding DINO. See C.1 for detailed analysis.

4.4. Feature visualization

The t-SNE [39] visualizations in Fig. 6 confirm our method’s abil-
ity to effectively learn high-fidelity features for unseen classes. The
baseline SA’s features are scattered and overlapping, yielding low sil-
houette scores of 0.304 on UEC FOOD 256 and 0.331 on FOWA. In
contrast, our method produces more compact and well-separated clus-
ters, improving these scores to 0.532 and 0.551, respectively. This im-
proved feature space directly results from our framework’s synergistic
design. It effectively aligns discriminative visual features from MSCIM
with rich semantic embeddings from CTFEM to enforce clear inter-class
boundaries.
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() SA (b) RRFS (c) Ours

(b) RRFS (c) Ours

Fig. 5. Qualitative results on UEC-FOOD 256 (left) and FOWA (right). Our method (c) is compared against baselines SA (a) and RRFS (b). Red and green boxes
denote unseen and seen classes, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

UECFOOD-256

Silhouette Score: 0.304

FOWA

Silhouette Score: 0.532

Unseen Classes
I cels on rice noodles with fish curry
B riceball M tempura bowl malasada
W bagel

udon noodle

spaghetti Wl nasi goreng
M tensin noodle

M miso soup M crullers I chincsc soup

Unseen Classes
M fried mushrooms
M scaweed and cgg soup M sauteed shrimps

B seaweed soup
M fried potato slices noodles with chicken sauce

I chinese cabbage and vermicelli 1 boiled cabbage

Silhouette Score: 0.331
SA

Ours

Silhouette Score: 0.551

Fig. 6. Comparison of t-SNE visualizations of unseen class feature embeddings. The baseline SA (left) exhibits scattered and overlapping distributions. In contrast,
our method (right) forms compact and well-separated clusters, increasing the silhouette score from 0.304 to 0.532 on UEC FOOD 256.

Table 6
Ablation study (%) on the contribution of different components on UEC FOOD
256 and FOWA.

Dataset Components ZSD  GZSD
MSCIM CTFEM LLM Prompts Seen Unseen HM

UEC FOOD 256 - - - 242 18.6 249 21.3
v - - 258 17.3 256 20.6
- v - 254 176 26.3 21.1
- - v 26.8 185 255 21.4
v v - 258 184 2538 21.5
v - v 26.4 189 26.0 21.9
- v v 276 19.0 26.8 22.2
v v v 29.1 22.2 27.0 24.4

FOWA - - - 7.7 90.5 5.4 10.1
4 - - 80 864 59 11.0
- v - 79 899 68 12.7
- - v 9.0 904 7.2 13.3
4 v - 80 894 71 13.1
v - v 9.1 86.8 8.6 15.6
- v v 9.8 90.1 8.2 15.1
v v v 10.2 89.8 8.8 16.0

4.5. Ablation experiments

To analyze component effectiveness, we conduct ablation experi-
ments on both UEC FOOD 256 and FOWA, with results reported in
Table 6.

4.5.1. Component effectiveness analysis

Under plain class-name semantics, neither MSCIM nor CTFEM alone
yields large HM gains as shown in Table 6. This aligns with their de-
sign as semantic-capacity amplifiers rather than standalone boosters.
Both modules reserve representational headroom for enriched LLM de-
scriptions. Specifically, these descriptions encode plating structure, in-
gredient co-occurrence, and preparation cues. Such details are absent in
hand-crafted prompts such as “a photo of a {class}”.

With LLM-generated descriptions, their coordination produces sub-
stantial improvements. On UEC FOOD 256, HM increases from 21.3 %
to 24.4 %, and on FOWA, from 10.1 % to 16.0 %. This reflects MSCIM’s
multi-scale receptive aggregation grounding enriched semantics, and
CTFEM’s global-local fusion stabilizing margins. The modest standalone
shifts are intentional, tuned for structured semantic infusion. This is cor-
roborated by the t-SNE visualizations discussed in Section 4.4, which
confirm higher-fidelity representations. Further validation is provided
by the semantic scaling analysis in Section 4.5.4 and efficiency analysis
in Section 4.6. These results indicate that the gains stem from principled
co-design rather than new atomic operators.

4.5.2. Effectiveness of MSCIM

The comparison between our full model and the variant without
MSCIM reveals consistent performance variations. To further validate
the internal design, we conducted additional ablation on the paral-
lel branches as reported in Table B.3. The removal of any single di-
lation branch, whether d =1, d =2, or d =3, leads to performance
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degradation compared to the full three-branch configuration. Notably,
removing the d = 2 branch causes the most significant decline, indicat-
ing the importance of intermediate-scale feature aggregation.

To evaluate head allocation variants, we ablated on UEC FOOD 256
under ZSD and GZSD settings. The balanced configuration of 2, 3, and
3 achieves the highest scores. Specifically, it yields 29.1 % for ZSD and
24.4% for GZSD HM. This outperforms alternatives like the split of 2, 4,
and 2 with an HM of 23.1 % and the split of 2, 2, and 4 with an HM of
22.0 %. The variant without MSCIM yields an HM of 22.2 %, while un-
balanced splits such as 4, 2, and 2 reach 17.6 %, showing notable drops.
Relative AHM values further underscore the stability and effectiveness
of the 2, 3, and 3 split.

4.5.3. Effectiveness of CTFEM

The CTFEM module indicates its value through structured process-
ing of detailed LLM-generated descriptions. The observed performance
variations in the configuration without CTFEM indicate the importance
of converting rich textual descriptions into structured global and local
semantic features. This provides more robust representations than basic
embeddings for fine-grained class discrimination.

4.5.4. Impact of LLM-generated descriptions

We validate the use of LLM-generated descriptions through two abla-
tions detailed in B.3. First, framework performance scales with the qual-
ity of the semantic source as shown in Table B.5. Upgrading from hand-
crafted prompts to GPT-4o0 yields a GZSD HM gain of +3.1% on UEC
FOOD 256. Second, our approach outperforms prompt-learning meth-
ods such as CoOp. These results confirm that explicit culinary knowl-
edge from LLMs is essential for ZSFD. It cannot be effectively replaced
by learned continuous prompts.

4.6. Computational cost analysis

A detailed cost analysis validates the efficiency of our framework
as provided in C.3. As shown in Table C.9, ZeSF achieves a favorable
balance between performance and cost. It outperforms the baseline SA
with faster inference speed and is more compute-efficient than heavier
generative models. Its reliance on LLMs is a practical offline step with
no inference cost.

4.7. Focusing where it matters

To further validate the effectiveness of MSCIM, we use Grad-
CAM [40] to visualize attention regions in Fig. D.2. The visualizations
reveal that integrating MSCIM enhances target localization. In contrast
to the scattered attention of the baseline, our model concentrates focus
on relevant object regions. This allows it to capture fine-grained details
and identify multiple objects in complex scenes. Consequently, the at-
tention is more continuous and accurate.

4.8. Impact of semantic quality on performance

A significant finding is that the framework’s performance scales with
the quality of the LLM-generated descriptions. Upgrading from hand-
crafted templates to GPT-40 descriptions yields GZSD HM improve-
ments. Specifically, it provides a gain of +2.9 % on UEC FOOD 256 and
+2.9% on FOWA. Interestingly, GPT-3.5 reveals a trade-off. It shows
a slight HM dip on UEC FOOD 256 but improves the unseen-class mAP
by +1.9% in ZSD. This underscores the sensitivity of the model to se-
mantic granularity. This reliance on LLMs is a practical, one-time offline
preprocessing step that has no impact on inference speed or cost. A full
discussion is provided in B.2.
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5. Conclusion

Our primary contribution is ZeSF, a visual-semantic framework
specifically tailored to fine-grained ZSFD (Zero-Shot Food Detection)
and validated on UEC FOOD 256 and FOWA. Its design principles,
namely expanding receptive fields through the MSCIM (Multi-Scale Con-
text Integration Module) and fusing global with local semantics, also
yield consistent gains on MS COCO and PASCAL VOC. This indicates
transfer beyond food-specific distributions without dataset-specific tun-
ing. The synergy between visual encoding at multiple scales and seman-
tic enrichment across dual granularities offers a valuable blueprint for
other researchers. The modular nature of MSCIM and CTFEM (Contex-
tual Text Feature Enhancement Module) makes them transferable com-
ponents for tackling fine-grained zero-shot challenges in other domains,
such as retail product recognition, biological species identification, or
defect detection in manufacturing. For complementary evidence, Ap-
pendix Table C.8 reports class-wise APs on challenging categories.

Despite these strengths, we identify several avenues for future im-
provement as well as acknowledge the following limitations. First, the
framework’s performance is intrinsically linked to the descriptive qual-
ity of the upstream LLM. While this shows a desirable “future-proof”
scalability that benefits from advancements in language modeling, it
also highlights a practical dependency that must be considered for de-
ployment. Second, our computational analysis reveals that while ZeSF
achieves faster inference than the baseline, its absolute throughput may
still challenge applications demanding extreme efficiency, such as real-
time processing on edge devices. These system-level limitations, along
with specific performance challenges, directly inform our future re-
search agenda.

We specifically aim to address performance issues identified in our
failure case analysis as shown in Fig. D.1, such as struggles with severe
occlusion and high visual ambiguity. To this end, future work will ex-
plore lightweight attention mechanisms and knowledge distillation to
build a more efficient model. This will reduce dependency on large-
scale models. Application-wise, we aim to deploy and refine ZeSF for
real-world intelligent dining systems, explicitly tackling robustness to
varied lighting conditions and occlusions. We also plan to extend the
framework from detection to fine-grained ingredient recognition and
quantity estimation. This is an essential step toward real-time nutritional
analysis and truly intelligent food-centric ecosystems.
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Table A.1
Additional reproducibility details from the configura-
tion.
Aspect Setting
Backbone ResNet-50
Neck out channels 256
Transformer Encoder Decoder layers 6
Queries 900
Normalization (Backbone) FrozenBN
Normalization (Neck) GroupNorm
Image format RGB
Input Channels 3
Optimizer Adamw
Scheduler MultiStepParam
Milestones 90,000
Iterations 30,000
Batch size 8
Eval / checkpoint period 2000 iters
Gradient clipping max_norm=0.1
Model EMA Enabled
Contrastive temperature 7=20.0
NMS (postproc) 0.7

Table A.2

Dataset statistics for all benchmarks. “Annotations” counts labeled bound-
ing boxes. Splits: UEC FOOD 256 (205/51), FOWA (184/44), MS COCO
2014 (65/15), PASCAL VOC 2007 + 2012 (16/4).

Datasets Classes Annotations Images

Seen Unseen Train Test Total
UEC FOOD 256 205 51 28,429 20,452 5732 26,184
FOWA 184 44 95,322 10,463 10,140 20,603
MS COCO 65 15 548,745 62,300 10,815 73,115
PASCAL VOC 16 4 52,090 10,728 10,834 21,562

Appendix A. Experimental details
A.1. Implementation details

Table A.1 provides additional reproducibility details from our active
configuration. All settings are shared by both ZSD and GSD evaluations
across every dataset, with no hyperparameter changes between modes.

A.2. Dataset statistics

Table A.2 summarizes the statistics for all benchmarks used in our
experiments.

Appendix B. Additional ablation studies
B.1. Detailed MSCIM ablations

We provide detailed ablation studies on the architectural compo-
nents of MSCIM. Table B.3 analyzes the contribution of each dila-
tion branch. Table B.4 evaluates different head allocation strategies for
MSCIM.

B.2. Semantic sensitivity discussion

This section provides a detailed analysis of the framework’s sensitiv-
ity to the quality of semantic descriptions, as summarized in the main
paper. A key finding from our semantic source ablation (Section 4.5.4)
is that the framework’s performance scales positively with the quality
of LLM-generated descriptions. Upgrading from GPT-3.5-Turbo to GPT-
4o yields a significant GZSD HM improvement of 3.5% on UEC FOOD
256 and 1.2 % on FOWA. Interestingly, this scaling effect is not uniform:
on the highly fine-grained UEC FOOD 256 dataset, GPT-3.5 descriptions
improve ZSD (+ 1.9 %) and GZSD Unseen (+ 1.3 %) scores over the base-
line but reduce seen-class performance, leading to a slight HM decrease
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Table B.3
Ablation study (%) on the contribution of different dilation branches within
the MSCIM.

Dataset Different dilation ZSD GZSD
Seen Unseen HM

UEC FOOD 256  Without dilation d = 1 27.7 19.8 26.7 22.8
Without dilationd =2 26.7 17.9 26.2 21.2
Without dilation d = 3 28.5 20.4 26.9 23.2
Ours 29.1 22.2 27.0 24.4

FOWA Without dilation d = 1 8.7 85.6 7.7 14.1
Without dilation d = 2 8.4 89.6 6.8 12.6
Without dilationd =3 9.2 89.9 8.0 14.8
Ours 10.2  89.8 8.8 16.0

Table B.4

Ablation study of head allocation variants for MSCIM on
UEC FOOD 256: performance comparison (%) under ZSD
and GZSD settings. AHM is the relative change in HM com-
pared to the best split (2,3,3).

Head Split (d = 1,2,3) ZSD GZSD

Seen Unseen HM
Without MSCIM 27.6 19.0 26.8 22.2
(2,2,4) 28.5 18.7 26.9 22.0
(2,4,2) 28.9 20.2 27.0 23.1
(4,2,2) 26.5 14.3 23.0 17.6
3,3,2) 26.8 16.3 25.9 20.0
(2,3,3) 29.1 22.2 27.0 24.4

Table B.5
Ablation study (%) on the impact of textual auxiliary information gen-
eration methods.

Dataset LLM Prompt LLM Model ZSD GZSD

Seen Unseen HM

UEC FOOD 256 X - 25.8 18.4 258 21.5
v GPT-3.5-Turbo 27.7 17.0 27.1  20.9
v GPT-40 29.1 22.2 27.0 24.4
FOWA X - 80 894 71 13.1
v GPT-3.5-Turbo 8.7 89.2 8.1 14.8
v GPT-40 10.2 89.8 8.8 16.0

Table B.6

Ablation study (%) on UEC FOOD 256 under ZSD and GZSD set-
tings: impact of different class description strategies. All vari-
ants share the same detector backbone, optimization schedule,
and data augmentation, differing only in the class description
strategy. CoOp results are the mean result over 3 random seeds.

Method ZSD GZSD

Seen Unseen HM
Hand-crafted Prompts 24.2 18.6 24.9 21.3
CoOp (Context tokens = 8) 24.4 17.6 23.9 20.2
CoOp (Context tokens=16) 25.4 18.2 24.4 20.8
LLM-generated Prompts 29.1 22.2 27.0 24.4

(-0.6 %). This suggests not architectural fragility, but a shifting trade-
off between seen-class discrimination and unseen-class generalization,
depending on the granularity of semantic input. We interpret this as
a characteristic of an architecture optimized to leverage rich semantic
information. While simple hand-crafted prompts provide a robust but
low-ceiling baseline, our framework is designed to parse complex de-
tails. Less discriminative descriptions, such as those from GPT-3.5 for
nuanced food categories, may not fully activate the model’s special-
ized mechanisms, whereas the highly structured semantics from GPT-
4o align well with the design, resolving the trade-off and substantially
lifting overall performance. This positions our approach as a scalable
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and forward-compatible system that can readily benefit from future im-
provements in language models without architectural modification.

The practical viability of this approach is supported by two factors.
First, the use of LLMs is a one-time, offline preprocessing step, elimi-
nating runtime costs or API dependencies during inference. Second, the
increasing availability and power of capable open-source LLMs, such
as Llama 3, significantly enhance the long-term accessibility of this
methodology. While this study establishes the core principle, we ac-
knowledge that a comprehensive robustness analysis remains a broad
undertaking. A systematic evaluation across a wider spectrum of open-
source models and the exploration of targeted prompt engineering tech-
niques to enhance adaptability in resource-constrained settings are valu-
able directions for future work.

B.3. Semantic source ablations

To isolate the impact of textual auxiliary information, we compare
three semantic sources: a hand-crafted prompt template (“a photo of
a [class]”), GPT-3.5-Turbo generated descriptions, and GPT-40 gener-
ated descriptions. As shown in Table B.5, replacing the template with
GPT-3.5-Turbo yields mixed but informative effects: on UEC FOOD 256,
ZSD increases from 25.8% to 27.7 % and the GZSD Unseen score rises
from 25.8% to 27.1 % (+1.3%), but the Seen score drops (18.4% —
17.0%, -1.4%) leading to a slight HM decrease (21.5% — 20.9%, -
0.6 %). On FOWA, however, GPT-3.5-Turbo improves all open-set sen-
sitive metrics, including ZSD (8.0% — 8.7 %, +0.7 %), Unseen (7.1 %
— 8.1%, +1.0%), and HM (13.1 % — 14.8%, +1.7 %). Upgrading to
GPT-40 produces consistent gains across both datasets: for UEC FOOD
256, HM increases to 24.4% (+2.9% vs. baseline; +3.5% vs. GPT-
3.5) with a notable Seen boost (18.4 % — 22.2 %, + 3.8 %) while retain-
ing the Unseen improvement (27.0 %, + 1.2 % vs. baseline). For FOWA,
GPT-4o0 lifts ZSD to 10.2% (+2.2%), Unseen to 8.8% (+1.7%), and
HM to 16.0 %(+ 2.9 %). These results indicate a smooth scaling effect:
stronger, richer descriptions alleviate the minor trade-off observed with
GPT-3.5-Turbo and raise the overall performance ceiling without intro-
ducing instability.

Beyond comparing different LLM sources, we further validate the
necessity of LLM-generated descriptions by comparing against CoOp,
a representative prompt learning method. As shown in Table B.6,
LLM-generated descriptions (29.1 % ZSD, 24.4% GZSD HM) substan-
tially outperform both hand-crafted prompts (24.2% ZSD, 21.3 % HM)
and CoOp-learned prompts (25.4 % ZSD, 20.8 % HM with 16 tokens).
Notably, CoOp performs worse than hand-crafted prompts in GZSD
(-0.5%/-1.1%) on UEC FOODD 256, suggesting overfitting to seen
classes. This confirms that explicit culinary knowledge from LLMs is
necessary for ZSFD, and cannot be effectively replaced by learned con-
tinuous prompts.

Appendix C. Additional quantitative analysis
C.1. Comparison with open-vocabulary detectors

To validate our framework’s advantages over general-purpose vision-
language detectors, we compared with Grounding DINO, a strong open-
vocabulary detector. We evaluated Grounding DINO on FOWA under
GZSD using zero-shot (pre-trained model with class names) and fine-
tune (continued training on seen classes for varying epochs following
official configuration) settings, using identical training data for fair com-
parison. As shown in Table C.7, zero-shot Grounding DINO achieved
5.6 % HM (4.6 % seen, 7.2 % unseen), reflecting domain gap with gen-
eral datasets. Fine-tuning revealed catastrophic forgetting: at 5 epochs,
seen mAP rose to 37.6 % but unseen dropped to 2.5% (HM 4.69 %);
at 15 epochs, seen peaked at 63.6% but unseen collapsed to 1.3%
(HM 2.55%), with no recovery at 25 epochs. This reveals that with-
out explicit semantic guidance, fine-tuning biases toward seen-class
patterns and forgets pre-trained associations. In contrast, our method
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Table C.7

Grounding DINO vs. our method on the FOWA dataset under the GZSD
setting. Fine-tuning follows the official configuration (~2.5k iterations
per epoch; text encoder frozen). Extended fine-tuning increases seen mAP
but degrades unseen mAP, reducing HM. The ZSD column is omitted as
unseen-only filtering yields an identical unseen mAP.

VLM Model Traing Epochs GZSD
Seen Unseen HM
Grounding DINO (Zero-Shot) 0 4.6 7.2 5.6
Grounding DINO (Fine-tune) 5 37.6 2.5 4.69
10 39.5 2.3 4.35
15 63.6 1.3 2.55
25 62.1 1.3 2.55
Ours 12 89.8 8.8 16.0
Table C.8

Class-wise AP (%) on selected challenging categories of the
FOWA dataset. The 15 classes include conceptually similar
pairs such as diced chicken with green pepper vs. pork with
green pepper, general vs. specific instances such as millet con-
gee vs. congee, and different preparations of the same ingredi-
ent such as roast chicken wings vs. fried chicken wings. Seen
and unseen classes are distinguished to assess generalization.
The SA column reports the baseline performance, and the Ours
column shows results from our method.

Category Type SA Ours
diced chicken with green pepper Seen 75.56 77.11
pork with green pepper Seen 92.71 94.25
sour and spicy shredded potatoes Seen 89.52 90.58
stir fried shredded potato Seen 62.55 62.19
roast chicken wings Seen 98.76  97.23
fried chicken wings Unseen  6.58 8.65
congee Unseen 7.02 8.49
millet congee Unseen  78.35 83.08
seaweed and egg soup Unseen  29.46 31.12
seaweed soup Unseen 14.39 15.98
egg soup Unseen 5.05 6.42
celery tofu Unseen  9.61 11.19
green vegetables and mushrooms ~ Unseen  26.13 27.78
fried mushrooms Unseen 10.28 11.86
apple Unseen  6.25 7.72

achieved 16.0% HM (89.8% seen, 8.8% unseen) after 12 epochs—
6.3x higher than fine-tuned Grounding DINO and 6.8x higher unseen
mAP, demonstrating effective seen-unseen balance. The performance
gap stems from three designs: (1) LLM-Generated Semantic Scaffold-
ing—rich GPT-40 descriptions serve as explicit anchors preventing over-
fitting, whereas Grounding DINO relies solely on class names; (2) CT-
FEM’s Dual-Granularity Fusion—decomposing descriptions into global at-
tributes (P;) and local identifiers (P;) with fixed fusion (y = 0.6) main-
tains balance, whereas Grounding DINO’s single embedding becomes
biased; (3) MSCIM’s Food-Centric Architecture—multi-dilation pathways
capture food’s compositional structure optimally. This demonstrates
that general-purpose open-vocabulary detectors face fundamental chal-
lenges in fine-grained ZSFD, which our framework overcomes through
domain-optimized design and explicit semantic guidance.

C.2. Class-wise AP analysis on challenging categories

To better understand the model’s behavior on challenging cases, we
report class-wise mAP for 15 representative categories from the FOWA
dataset (Table C.8). These categories were selected to highlight three
types of difficulty: (1) pairs with high conceptual similarity (e.g., diced
chicken with green pepper vs. pork with green pepper), (2) general
vs. specific instances (e.g., millet congee vs. congee), and (3) different
preparations of the same ingredient (e.g., roast vs. fried chicken wings).
We distinguish between seen classes (present in training) and unseen
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Table C.9
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Complexity analysis comparing our method with baselines on the UEC FOOD 256. Inference metrics measured on a

single NVIDIA GeForce RTX 2080 Ti GPU (batch size = 1).

Method Group Method  #Params (M) FLOPs(G)  FPS VRAM (GB)  ZSD GZSD
Seen Unseen HM
Generating-based ~ RRFS 60.2 538.8 144 35 23.6 20.1 229 21.4
ZSFDet 60.5 539.4 147 35 27.3 21.9 26.1 23.8
Mapping-based BLC 27.0 334.5 6.0 6.1 19.2 20.5 15.2 17.5
SA 51.2 403.1 2.7 3.4 24.2 18.6 24.9 21.3
Ours 51.5 412.7 3.5 3.4 29.1 222 27.0 24.4

classes (zero-shot) to evaluate generalization. The table compares our
method (Ours) with the baseline SA, showing that while performance
is strong on seen classes, unseen categories remain more challenging,
reflecting the inherent difficulty of fine-grained ZSFD.

C.3. Computational cost analysis

This section provides a detailed breakdown of the computational cost
analysis summarized in Section 4.6. Table C.9 presents a comprehen-
sive comparison of parameters, FLOPs, and performance metrics across
different methods. A direct comparison with the strongest mapping-
based baseline, SA, reveals that the substantial accuracy gains of ZeSF
are achieved with only a marginal increase in computational overhead.
Specifically, ZeSF adds only 0.3M parameters and 9.6 GFLOPs but de-
livers a significant + 3.1 % improvement in HM. This indicates the high
efficiency of our proposed modules, a conclusion further supported by
performance density metrics. As shown in Table C.9, ZeSF exhibits supe-
rior HM-per-FLOP (0.0591 vs. 0.0529) and HM-per-parameter (0.474 vs.
0.416) ratios compared to SA. Furthermore, the practical inference met-
rics highlight the efficiency of our architectural design. Despite the mi-
nor increase in theoretical FLOPs, ZeSF’s inference speed is notably
faster than SA’s (3.5 FPS vs. 2.7 FPS), suggesting that the sparse, non-
uniform structure of our MSCIM maps very effectively to modern GPU
architectures. The peak VRAM usage remains identical at 3.4 GB, indi-
cating no significant memory overhead.

This favorable efficiency profile also holds when comparing ZeSF
to generative methods. As shown in Table C.9, our model uses fewer
parameters ( 51.5M vs. 60M) and a significantly lower theoretical
computational load ( 413 GFLOPs vs. 539 GFLOPs) than both RRFS
and ZSFDet, while still achieving a higher HM. Although the genera-
tive methods exhibit a higher raw FPS, our framework delivers the best
overall balance between top-tier performance (HM) and computational
cost (Params/FLOPs). Moreover, this efficiency advantage extends to the
training process. Generative approaches often rely on complex, multi-
stage pipelines (e.g., pre-training on seen classes, training a feature gen-
erator, and then fine-tuning a classifier), which can be cumbersome. In
contrast, our framework is trained end-to-end in a single, unified stage,
significantly simplifying the development workflow. This finding rein-
forces our central argument that targeted architectural enhancements
are a more efficient path to superior performance than computationally
heavy feature synthesis.
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Appendix D. Qualitative analysis
D.1. Failure case analysis

To better understand the limitations of our framework, we analyze
representative failure cases on the FOWA and UEC FOOD 256 datasets
(Fig. D.1). Two main error types are observed. The first is misclassifica-
tion due to high visual similarity, which occurs when different classes
share attributes such as color, shape, or texture. For example, a green
apple may be misclassified as egg due to its uniform surface and reflec-
tion under specific lighting, fried potato slices may be confused with
thousand-leaf tofu because of their similar shape, and a complex soup
may be mistaken for green curry due to overlapping color cues from veg-
etables and broth. The second type is missed detections in cluttered or
occluded scenes, where the model sometimes fails to detect small or par-
tially hidden items, such as tofu in a dense dish. These cases highlight
the persistent challenges of fine-grained recognition, where subtle at-
tribute differences and scene complexity play a critical role. Addressing
these issues will be an important direction for future work, such as in-
corporating lightweight attention mechanisms or leveraging knowledge
distillation to improve robustness.

D.2. Grad-CAM visualizations

We use Grad-CAM to visualize the attention patterns of our model
and the baseline, as shown in Fig. D.2. These visualizations provide qual-
itative evidence that our complete framework learns more discrimina-
tive attention patterns compared to the baseline, indicating the effec-
tiveness of our architectural specialization when integrated with rich
semantics.

Supplementary material

Supplementary material associated with this article can be found in
the online version at 10.1016/j.patcog.2025.112928.
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Fig. D.1. Representative failure cases on the FOWA (top row) and UEC FOOD 256 (bottom row) datasets. Two main error types are observed: (1) misclassification
caused by high visual similarity in color, shape, or texture (e.g., fried potato slices vs. thousand-leaf tofu), and (2) missed detections in cluttered or occluded scenes
(e.g., undetected tofu).

UEC-FOOD 256

(a) image (b) SA (c) Ours

(a) image

(b) SA (¢) Ours

Fig. D.2. Grad-CAM visualizations of our model and the baseline on the UEC FOOD 256 and FOWA datasets. The first column shows the original images, the second
column displays the results of the baseline model (SA), and the third column presents the results of our method.
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