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Food image recognition has recently been given considerable attention in the multimedia field in light of
its possible implications on health. The characteristics of the dispersed distribution of ingredients in food
images put forward higher requirements on the long-range information extraction ability of neural networks,
leading to more complex and deeper models. Nevertheless, the lightweight version of food image recognition
is essential for improved implementation on end devices and sustained server-side expansion. To address
this issue, we present Aggregation Feature Net(AFNet), a lightweight network that is capable of effectively
capturing both global and local features from food images. In AFNet, we develop a novel convolution based
on a residual model by encoding global features through row-wise and column-wise information integration.
Merging aggregation block with classic local convolution yields a framework that works as the backbone of
the network. Based on the efficient use of parameters by the aggregation block, we constructed a lightweight
food image recognition network with fewer layers and a smaller scale, assisted by a new type of activation
function. Experimental results on four popular food recognition datasets demonstrate that our approach
achieves state-of-the-art performance with higher accuracy and fewer FLOPs and parameters. For example, in
comparison to the current state-of-the-art model of MobileViTv2, AFNet achieved 88.4% accuracy of the top-1
level on the ETHZ Food-101 dataset, with similar parameters and FLOPs but 1.4% more accuracy. The source
code will be provided in supplementary materials.
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1 INTRODUCTION
Food computing[33] has gained increased attention within multimedia and computer vision, due
to its possible applications to diet, health, and the food industry[17, 36, 43, 44, 46]. For example,
by determining the type, components or other characteristics of a meal, the nutritional value of a
meal can be assessed, and the individual can determine his diet habits, thereby ensuring the health
of the individual and the prevention of disease. The recognition of food images is integral to these
application scenarios[38, 50, 57]. In the context of a food computing system whose ultimate aim
is to aid people in managing their diet and health and facilitating their daily life, it is crucial to
implement a system for the efficient identification of food images on end devices such as mobile
phones. In addition, the large selection of foods and cooking techniques has led to a rapid expansion
of images of food, which has raised the standard for the long-term expansion of image recognition
on the server side. Lastly, the recognition of food images belongs to the more complex and fine-
grained recognition[42], and light efforts in the field will serve as a useful reference for similar
work on fine-grained classification. Nevertheless, prevalent techniques at present[18, 29] adopt
deep learning-based solutions, necessitating a vast amount of parameters and a prolonged training
and inference process. So the emphasis of this paper is on the lightweight of deep neural network
models for food image recognition.

Fig. 1. Some samples from ETHZ Food-101[1] and Vireo Food-172[4]. Ingredients are scattered throughout
the food image.

First, food image recognition possesses unique characteristics that distinguish it from general
image classification tasks, which can be summarized in two main differences: (1) Image Features:
In general image recognition, objects typically appear as relatively continuous color blocks with
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Fig. 2. Comparison in the parameter dimension with state-of-the-art CNN-based (MobileNetV3[12] &
ShuffleNetV2[28] & GhostNetV2[53]) and Hybrid (MobileViTv2[31]) lightweight models across different
datasets. (a): ETHZ Food-101[1]; (b): Vireo Food-172[4]; (c): UEC Food256[21]; (d): ISIA Food-500[35].

Fig. 3. Comparison in the FLOPs dimenstion with state-of-the-art CNN-based (MobileNetV3[12] &
ShuffleNetV2[28] & GhostNetV2[53]) and Hybrid (MobileViTv2[31]) lightweight models across different
datasets. (a): ETHZ Food-101[1]; (b): Vireo Food-172[4]; (c): UEC Food256[21]; (d): ISIA Food-500[35].
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clear boundaries and extensive backgrounds. In contrast, food images often consist of multiple
ingredients, with the same ingredient dispersed across different parts of the image, forming similarly
colored blocks but with irregular shapes. The boundaries between different ingredients are intricate
and convoluted, and the background is often minimal. Consequently, food image recognition is
a complex fine-grained image recognition task. Analyzing the heatmaps, the recognition results
for ordinary objects such as cats, dogs, or cups show clear focal points within the object’s spatial
location. However, in food image recognition heatmaps, the focal points often appear on specific key
ingredients, displaying a discontinuous, multi-spot distribution. (2) Challenges in Image Recognition.
The complexities of food image recognition surpass those of general image classification tasks in
several ways. On one hand, when the image background is minimal and the number of categories
to be recognized is relatively small, the high quality of food images makes the recognition task
easier than typical image classification tasks. The interaction of multiple ingredients in food images
does not significantly impact the difficulty of recognition. Our experimental results indicate that
for datasets such as ETHZ Food-101[1] and Vireo Food-172[4], which feature high-quality images
and fewer categories, lightweight models achieved high recognition accuracy, with some models
reaching or even exceeding 90%. On the other hand, when the image background is extensive and
the number of categories to be recognized increases, the intricate fine-grained features of food
images exacerbate the recognition difficulty. The potential for confusion between categories rises
substantially, given that different dishes may consist of similar ingredients. Experimental results
show that for datasets such as UEC Food-256[21] and ISIA Food-500[35], the recognition accuracy
is considerably lower than for ETHZ Food-101[1] and Vireo Food-172[4]. On the Food-256[21]
dataset, the highest accuracy achieved by lightweight models was approximately 72%, while on the
Food-500[35] dataset, the maximum accuracy was only around 66%.
To date, there has been limited research conducted on the topic of lightweight food image

recognition. At the outset, a strategy involving a lightweight CNN was applied for the purpose
of food image recognition[20, 22, 40, 52]. The key impediment is that conventional convolution
models are unable to access extensive data from food images due to the scattered positioning
of the ingredients, and obtaining further long-range characteristics necessitates a more intricate
CNN model, thus limiting the potential for lightweight solutions. As Fig. 1 indicates, the essential
factor in distinguishing between food images is the components that comprise the meal, with
multiple ingredients often scattered throughout the picture. Additionally, the same component in
the same dish can display distinct features in terms of size, form, and arrangement depending on
the method of preparation, as is demonstrated by the two Takoyaki and Salad pictures within Fig. 1.
As such, it is vital to accurately capture the far-reaching relationships between these scattered
food ingredients to successfully identify a dish. Utilizing Vision Transformer (ViT)[7], extracting
global details is achievable with the attentional mechanism driven by the input data. However,
compared to convolutional operations, it suffers from the issue of high computational complexity.
It mainly utilizes the Encoder part of Transformer, consisting of Attention and Feed Forward
Network (FFN) components. The computational complexity mainly arises from the Attention part,
where two matrix multiplications are required to compute the Attention matrix and the output
value matrix. This non-linear complexity leads to a significant increase in computational cost as
the model scales up. The goal of lightweight models is to drastically reduce parameter size and
computational complexity while maintaining sufficient accuracy. Therefore, using Transformer
for lightweight models poses a challenging task. Although some models like MobileVitV2[31]
attempt to reduce computational costs by simplifying the operations in the Attention part, their
computational complexity is usually significantly higher than that of pure CNN models. Sheng[48]
endeavored to utilize the advantages of ViT’s extensive global representation and CNN’s potent
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local representation capability. Nonetheless, the magnitude of the parameters and computations of
the model is still appreciable.

Therefore, the challenges of lightweight food image recognition derive two-fold: (1) Owing to the
disordered nature of the positioning of components, the long-range pixel correlation characteristics
of food images are of great significance for food image recognition. Despite CNN’s capacity for
distinguishing local characteristics, a profoundly deep network must be constructed to represent the
relationship between far-off pixel vectors. This will result in a marked augmentation of parameters
and processing, which is antithetical to the need for a lightweight network. (2) ViT enables us to
effectively obtain long-range pixel correlation features. Nonetheless, given the quadratic number
of interactions between tokens, substantial vector dot product operations are necessary, as well as
a greater volume of training data and additional cycles to secure the local correlations. Therefore,
the processing ability is constrained and it is difficult to meet the lightweight requirements.

Our efforts have successfully resolved the primary issues related to lightweight food recognition,
namely, the lack of long-range information expression capabilities of CNN and the complexity and
difficulty of training the ViT model. We use aggregation block to capture the global information
of food ingredients scattered in food images to obtain global expression and form an integrated
block with local convolution. This integrated block is used as the basic structure of AFNet, which
effectively improves the food image recognition accuracy. Furthermore, based on the efficient use
of parameters by the aggregation block, we significantly decrease the number of network layers to
lower the number of parameters and computations. We conduct comprehensive experiments on
four significant databases in the food image field, the results show that compared with existing
CNN-based, ViT-based, and hybrid lightweight networks, as shown in Fig. 2 and Fig. 3, in the case
of equal or better recognition accuracy, our method has certain advantages in key metrics such as
the number of parameters and FLOPs.

We summarize our contributions as follows:

• We designed a new type of neural network structure for food image recognition, called
Aggregation Block, which implements a pure convolution block through information inte-
gration in the row direction and column direction, feature encoding, and residual model.
The aggregation block can help effectively collect global information and feature positioning
information.

• Based on the efficient use of parameters by the aggregation block, we constructed a lightweight
food image recognition network AFNet with fewer layers and a smaller scale. Compared
with similar lightweight image recognition models, it can achieve higher performance with
fewer parameters and less computation.

• We designed a new activation function in the optimization of the AFNet network, called
SoftReLU, which is a generalization of the Hardswish activation function. Experiments show
that it can speed up the optimization of simple models and achieve high performance.

2 RELATEDWORK
Our work is closely related to two research fields: (1) Lightweight CNNs, ViTs, and hybrid models,
and (2) Lightweight food recognition.

2.1 Lightweight CNNs, ViTs, and Hybrid Models
ResNet [10] has been widely acknowledged as one of the top CNN architectures. Nevertheless,
the most advantageous CNN models necessitate a considerable quantity of parameters and FLOPs.
Lightweight CNNs that demonstrate competitive performance despite fewer parameters and FLOPs
include ShuffleNetv2[28], ESPNetV2[32], EfficientNet[51], FasterNet[3], and MobileNetV2 [45] &

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:6 Y. Yang et al.

V3 [12]. MobileNetV3[12] is the most current iteration of a class of models constructed specifi-
cally for environments with limited resources, such as mobile devices. The basic blocks of Mo-
bileNetV3 [12] include MobileNetV2 [45] block and Squeeze-and-Excite network[15]. The frequent
difficulty of CNN-based models with lightweight structures is their lack of capability to pick up on
global information.

In order to acquire global information expeditiously, ViT [7] introduces transformer models for
natural language processing assignments to the field of vision, particularly image recognition. The
application of ViT in the realm of machine vision has prompted investigations into its capacity
for efficiency. The majority of endeavors are focused on optimizing the self-attention process to
raise efficiency, for instance SwinT [27], EfficientFormer [24], LightViT [16], EfficientViT [26],
MiniViT [59] and TinyViT[56]. The primary challenges of ViT-based lightweight models are the
complexity of training and the considerable computing expenditure due to the quadratic amount
of interactions between tokens. Researchers have recently strived to develop compact hybrid
models that integrate CNN and ViT for mobile vision tasks, evidencing that the combination of
convolution and transformer yields augmentation in forecast accuracy as well as training solidity.
Following, a considerable array of light-weight works on these models has been created, such as
MobileFormer[5], CMT[8], CvT[55], BoTNet[49], Next-ViT[23], EdgeViTs [39], MobileViTv1[30]
and MobileViTv2[31]. The hybrid lightweight model composed of CNN and ViT has been successful
in amalgamating global and local data, yet the issue of a bulky model persists.

2.2 Lightweight Food Recognition
Recently, Min et al. [33] conducted an in-depth survey on the topic of food computing, which
included food recognition. In the earlier years, various hand-crafted features are utilized for
recognition [1, 58]. For example, Lukas et al. [1] utilized random forests to mine discriminative
image patches as a visual representation. Owing to the advancement of deep learning technology,
numerous recognition techniques founded on deep learning have arisen [11, 18, 19, 29, 34, 37, 50].
Given the necessity of lightweight food image recognition, a lot of related research work has

been proposed. Early researchers use the light-weight CNN method for food image recognition[20,
22, 40, 52]. Tan et al.[52] recently propose a novel lightweight Neural Architecture Search (LNAS)
model to self-generate a thin CNN that can be executed on mobile devices, achieving nearly 76%
recognition accuracy on the ETHZ Food-101 dataset. The precision of these CNN-based lightweight
food recognition models is not notably successful. ViT offers a novel approach to harvesting global
characteristics of food images, Sheng et al. [48] tried to extract global and local features with a
parallel structure composed of the ViT group and CNN, and obtained the SOTA performance.
However, due to the multi-head attention mechanism of the ViT, the model size is still large. Sheng
also tried to use a ViT-based lightweight food image recognition model [47], which got a high
accuracy yet still suffers from high FLOPs.
In comparison to ViT-based approaches, we’ve developed a simplified yet efficient convolution

network, utilizing the features of food images and allowing for improved regulation of parameters
and computations. In this architecture, an aggregate block-based convolution is utilized to identify
global features and a MobileNetV2 block is fashioned to draw out local features, resulting in SOTA
performance.

3 METHOD
The overall network architecture is shown in Fig. 4, using a 3×256×256 image as input, an aggrega-
tion block together with a normal convolution as the leading head. The network’s core consists of
5 layers with a collective of 9 aggregation blocks, each layer having the same resolution, except the
first block’s resolution which is halved. The tail uses a 1×1 convolution to expand the network to
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Fig. 4. Frame Work of AFNet. Middle is the backbone of AFNet. Top is the method of aggregation block.
Bottom Right is the image of our proposed novel activation function SoftReLU.

the specified number of channels, and finally connects a classifier layer, which adjusts the graphics
resolution to 1×1 through global average pooling, and then maps the channel to the classification
through a linear model.
Since the main part uses the aggregation block, AFNet is much shallower than the general

lightweight network, with only 9 blocks. The aggregation block constructs input data through
the integration of row and column information, feature coding, and residual model, improves the
utilization efficiency of parameters through data integration and maintains high performance while
reducing the number of parameters and network scale.

3.1 Aggregation Block
As shown in the Fig. 4 and Table 1, the processingmethod of the aggregation block is to first integrate
the information of the same row or the same column in the row direction and column direction
respectively. Among the many optional ways of information integration, we use a relatively simple
way of calculating the average value of pixels in each row or column. Through the integration of
row/column information, the obtained vector contains the relevant information of the pixels of
the full image. Use one-dimensional deep convolution for the obtained vector to realize learnable
feature coding, and then broadcast the coding information to restore it to the size of the coded image,
and then combine the feature coding in the row direction with the feature coding in the column
direction. The original image matrix is added and then passed through a batch normalization layer,
and finally used as the input of the MV2 block. The addition of the batch normalization layer here
is based on the following considerations: since the encoding information is added to the input
data, and this information is generated by the aggregation of the rows and columns, even if the
original image matrix is normalized, the new input matrix will generally become denormalized, so
adding a batch normalization layer is necessary. Generally, the neural network used for images will
have a nonlinear activation layer after the batch normalization layer to generate a threshold-style

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:8 Y. Yang et al.

nonlinear output, which will obviously erase most of the added coding deviation information, so
there is no nonlinearity in the aggregation block here.
The aggregation block collects and integrates global information in the row direction and the

column direction, and then uses it for feature encoding. In doing so, the following three objectives
are achieved:

• Collect global information. The food image is the same as the ordinary image in that it
also has obvious aggregated color blocks, but the difference is also obvious. Since food is
composed of various ingredients, different ingredients may be mixed and stirred during the
food production process, and finally the same ingredient is distributed to different positions
of the image. Therefore, it is important to collect information about food ingredients from a
global perspective for food image recognition.

• Implement feature encoding. In the neural network used for food image recognition, the
same ingredients may be located in different positions in different images, so using pixel
position encoding on the original image cannot effectively deal with the characteristics of
different distributions of the same ingredients. Therefore, it is more reasonable to encode the
position of the extracted features in the middle layer of the network. Feature encoding in
this way can reflect the positional relationship between different color blocks.

• Lightweight achieved through shallower neural networks. The existing image recognition
neural network generally builds a deeper network by continuously reducing image resolution
while increasing channels/features. Usually, to offset the computational load brought by
the deep network, a smaller convolution kernel is generally selected. Therefore, only on
the deeper network layer, the correlation information of long-distance related pixels on the
original image (such as the same food material scattered throughout the image in the food
image) can be captured. Aggregation block can effectively reduce the number of layers of the
network, because it integrates the global information collected based on the row direction and
column direction into the initial input, so that the neural network already has the correlation
information between the distant pixels of the image at the shallow layer, instead of relying on
the deepening of the number of network layers to obtain. Therefore, the aggregation block
can achieve lightweight without loss of accuracy by greatly reducing the number of layers of
the network.

Here we describe the calculation method and process of the aggregation block. Let the size of the
input image be ℎ ×𝑤 × 𝑐 , where ℎ represents the height of the image,𝑤 represents the width, and
𝑐 represents the number of channels,𝑀ℎ×𝑤×𝑐 represents a matrix of vectors. let 𝑒𝑙 = (1, 1, · · · 1)𝑇 ,
its elements are all 1, and its dimension is l. 𝐸ℎ×𝑤×𝑐 is a matrix with the same size as𝑀ℎ×𝑤×𝑐 and
all elements are 1, let � represent ordinary matrix multiplication, and ∗ represent dot multiplication.
The calculation process of the encoding part of the aggregation block can be divided into 3 steps:
Row/ColumnAggregation. The first step in the process is to compute the mean in the row/column
direction. In the row direction, perform the following transformation 1

𝑤
𝑀

(𝑘 )
ℎ×𝑤 � 𝑒𝑤 , the result is

a matrix of ℎ × 1. Stack all the transformed matrices to obtain the row-wise aggregation matrix
1
𝑤
𝑀𝑟𝑜𝑤

ℎ×𝑐 . Similarly, the operation in the column direction transforms 1
ℎ
𝑒𝑇
ℎ
�𝑀 (𝑙 )

ℎ×𝑤 , after stacking, the
aggregation matrix 1

ℎ
𝑀𝑐𝑜𝑙

𝑤×𝑐 can be obtained in the column direction.
Feature Encoding. Feature encoding is realized by one-dimensional deep convolution with a
kernel size of 1, and in the row direction, continue to transform 1

𝑤
𝑀𝑟𝑜𝑤

ℎ×𝑐 � 𝐵
𝑟𝑜𝑤
ℎ×𝑐 , where 𝐵𝑟𝑜𝑤

ℎ×𝑐 is
the convolution parameter. Since one-dimensional depth convolution is used, there are only 𝑐

parameters. In the column direction, continue with a similar transformation 1
ℎ
𝑀𝑐𝑜𝑙

𝑤×𝑐 � 𝐵
𝑐𝑜𝑙
𝑤×𝑐 . Where

𝐵𝑐𝑜𝑙𝑤×𝑐 is the convolution parameter. The two results here, the former is called feature encoding in
the row direction, and the latter becomes feature encoding in the column direction.
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Residual Combination. Expand the feature encoding in the row direction and column direction
to the original image size through broadcasting, and add it to the original image matrix to obtain
the output of the aggregation block encoding part, namely:

𝑀ℎ×𝑤×𝑐 +
(
1
𝑤
𝑀𝑟𝑜𝑤

ℎ×𝑐 � 𝐵
𝑟𝑜𝑤
ℎ×𝑐

)
∗ 𝐸ℎ×𝑤×𝑐 +

(
1
ℎ
𝑀𝑐𝑜𝑙

𝑤×𝑐 � 𝐵
𝑐𝑜𝑙
𝑤×𝑐

)
∗ 𝐸ℎ×𝑤×𝑐 (1)

This output is used as input to the batch normalization layer.
From the implementation process of the aggregation block coding part, the following character-

istics can be observed:
• Compared with the general image two-dimensional convolution block, the calculation of the
aggregation block is less. The reason is that its parameters come from two one-dimensional
deep convolutions. Since a 1 × 1 convolution kernel is used, the number of parameters is
2𝑐 . According to the feature encoding mechanism described above, the calculation process
is not affected by the size of the image. The amount of calculation is also mainly from one-
dimensional convolution. Under the conditions of ignoring aggregation/mean operations and
broadcasting operations, the number of addition and multiplication operations is 2𝑐 (ℎ +𝑤).
Compared with ordinary two-dimensional convolution, the amount of calculation is very
small.

• The residual model enables automatic learning of the encoding module. Taking a single-
channel image as an example, the transformation formula at this time is:

𝑀ℎ×𝑤 + 𝛽𝑟𝑜𝑤

𝑤
𝑀ℎ×𝑤 � 𝑒𝑤 � 𝑒

𝑇
𝑤 + 𝛽𝑐𝑜𝑙

ℎ
� 𝑒ℎ � 𝑒

𝑇
ℎ
�𝑀ℎ×𝑤 (2)

The feature encoding in the row direction and column direction is controlled by parameters
𝛽𝑟𝑜𝑤 and 𝛽𝑐𝑜𝑙 , respectively. They are automatically learned through the network, which can
automatically control the influence of the aggregation information in the row direction and
column direction on their respective outputs. When the number of channels is greater than
1, the influence of multi-channel aggregation information on the output can be automatically
coordinated.

3.2 SoftReLU Activation Function
Since the use of the aggregation block reduces the number of network parameters and network
scale, a more aggressive activation function can be used in network optimization. We use the new
activation function SoftReLU, which is actually an extension of the Hardswish activation function,
defined in the following way :

𝑆𝑜 𝑓 𝑡 Re𝐿𝑈 =


0 𝑥 ≤ −𝜆
𝑥 𝑥 ≥ 6 − 𝜆

𝑥 (𝑥 + 𝜆) /6 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

The activation function contains a hyperparameter 𝜆, which can be adjusted to allow a derivative
similar to ReLU but greater than 1. On the interval (−𝜆, 6 − 𝜆), the derivative function is 𝑓 ′ (𝑥) =
2𝑥+𝜆
6 , in Hardswish, 𝜆 = 3, the variation range of the derivative is

(
− 1

2 ,
3
2
)
. when 𝜆 = 2, the variation

range of the derivative is
(
− 1

3 ,
5
3
)
, when 𝜆 = 1, the variation range of the derivative is

(
− 1

6 ,
11
6
)
.

When the derivative value is small, the exploration range of the model becomes smaller during
the optimization process, and the convergence becomes slower. When the derivative value is
large, more oscillations will occur during the model optimization process, making it difficult to
converge. In the ablation experiment, we verified the effects of 𝜆 = 3, 𝜆 = 2, and 𝜆 = 1 on several
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Table 1. Structure of AFB. 𝐶 : number of channels; 𝐻 : height of input/output;𝑊 : width of input/output; AOR:
average of rows; AOC: average of columns;BEA: broadcast elementwise addition; 𝐸𝐴: elementwise addition;
Dwise3×3: depthwise convolution with kernel 3×3; 𝐸𝐶 : number of expanded channels.

Component Input Operator #Out

Row/Column Aggregation

𝐶 × 𝐻 ×𝑊 AOR 𝐶 ×𝑊

𝐶 × 𝐻 ×𝑊 AOC 𝐶 × 𝐻

𝐶 ×𝑊 Conv1d 𝐶 ×𝑊

𝐶 × 𝐻 Conv1d 𝐶 × 𝐻

𝐶 ×𝑊 ×𝑊 Unsqueeze(2) 𝐶 × 1 ×𝑊

𝐶 × 𝐻 ×𝑊 Unsqueeze(3) 𝐶 × 𝐻 × 1
𝐶 × 1 ×𝑊 BEA 𝐶 × 𝐻 ×𝑊

𝐶 × 𝐻 × 1 BEA 𝐶 × 𝐻 ×𝑊

𝐶 × 𝐻 ×𝑊 (origin) EA 𝐶 × 𝐻 ×𝑊

𝐶 × 𝐻 ×𝑊 (aggregated) EA 𝐶 × 𝐻 ×𝑊

𝐶 × 𝐻 ×𝑊 BatchNorm2d 𝐶 × 𝐻 ×𝑊

MobileNetV2 Block

𝐶 × 𝐻 ×𝑊 Conv1 × 1, ReLU6 𝐸𝐶 × 𝐻 ×𝑊

𝐸𝐶 × 𝐻 ×𝑊 Dwise3 × 3, ReLU6 𝐸𝐶 × 𝐻/𝑠 ×𝑊 /𝑠
𝐸𝐶 × 𝐻/𝑠 ×𝑊 /𝑠 Conv1 × 1, Linear 𝐶 × 𝐻/𝑠 ×𝑊 /𝑠

𝐶 × 𝐻 ×𝑊 (𝑜𝑟𝑖𝑔𝑖𝑛) EA(s=1) 𝐶 × 𝐻 ×𝑊

𝐶 × 𝐻/𝑠 ×𝑊 /𝑠 (𝑟𝑒𝑣𝑒𝑟𝑡𝑒𝑑) EA(s=1) 𝐶 × 𝐻 ×𝑊

typical databases, and found that 𝜆 = 2 obtained better results in most cases. Therefore, in various
comparative experiments, we used the setting of 𝜆 = 2.

3.3 Network Specification
The detailed network specification is shown in Table 2. The network first obtains a 128×128 image
plane through a 3×3 local convolution and then passes through a series of aggregation block groups.
At the tail of the network, the number of channels is expanded by 1×1 convolution, then global
pooling is performed to obtain the single-pixel output, and finally, a fully connected layer is used
to map to the number of classes.

3.4 Discussion
The block structure design of AFNet primarily takes into account features such as the dispersed
distribution of ingredients and fine-grain in food images. Through row-column integration, it
gathers relevant information dispersed across the image plane for the same ingredients to enhance
the network’s representational capacity. Unlike food images where key features consist of dispersed
patches of the same ingredients, ordinary images often exhibit larger backgrounds and stronger
continuity in the color blocks of recognized objects. Considering AFNet’s structure, it is expected to
yield acceptable results on general image datasets but is anticipated to perform even better on food
images. Extensive experiments conducted on four major food image datasets as well as common
image datasets demonstrate that AFNet performs reasonably well on general image recognition
tasks and exhibits outstanding performance on food image recognition tasks. Its performance
surpasses all current mainstream lightweight recognition methods.

The second purpose of constructing an aggregation block is to use parameters more effectively to
reduce computational costs.When the image resolution is large, using a fully connected networkwill
bring a heavy parameter burden while making the optimization process more prone to oscillation
or chaos. At the same time, the presentation form of various objects on the image is often some
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aggregated color blocks, so the stacking network based on ordinary convolutional blocks is widely
used in the image recognition network to reduce the number of parameters and calculation costs. In
the main CNN-based lightweight model, the researchers further improved the convolution to reduce
the amount of parameters and calculations, such as the depth convolution used in MobileNetV1[13],
the bottleneck model used in MobileNetV2[45], and the low-cost channel expansion operation
used in GhostNetV2[53] are all based on deep convolution and adopt different strategies to reduce
the number of parameters and calculations. Aggregation block also uses deep convolution in the
global information collection stage to reduce the amount of computation. However, unlike the
previous operation directly on the original data and using two-dimensional deep convolution,
AFNet operates on the integrated data in the row or column direction and uses 1D convolution.
The parameters and computational complexity of one-dimensional convolution are linear, so the
parameters and calculations added to the network model are very small.

The third purpose of using the aggregation block is to collect the global correlation information of
the image. Although local correlation is the decisive factor in image recognition, the acquisition of
global correlation information is still necessary. When there is no clear global information collection
and processing mechanism, such as MobileNetV1[13] and MobileNetV2[45], the model realizes
the reflection of global correlation through the overall full-level network structure. In almost all
image recognition network hierarchies, features are extracted by continuously shrinking feature
maps and increasing channels, so that the correlation of global information is generally reflected
at the back of the network, so it is usually necessary to lay out deeper network levels. Therefore,
some lightweight models are committed to reducing the network scale by adding a mechanism to
collect global information in the backbone blocks of the network: for example, in MobileNetV3[12],
the Squeeze Excitation block is introduced in some layers, which greatly reduces the number of
parameters and calculations of the model; GhostNetV2[53] also introduces Squeeze Excitation
blocks in some layers, and constructs an attention block based on average pooling in some layers to
integrate global information. In related research on vision transformer, by introducing transformer
blocks that are effective in natural language processing into image processing, the global correlation
can be effectively expressed. However, the pure transformer model is not effective in image-related
tasks, therefore most researchers combine it with convolutional blocks, but it is always difficult to
solve the problem of the transformer’s huge amount of computation.

The aggregation block introduces a non-transformer global information collection mechanism,
also it is different from several previous mechanisms (such as Squeeze Excitation), the main
difference lies in two points: (1) The previous mechanism including the transformer integrated
the global information on the two-dimensional image, while the aggregation block integrated the
information in the row direction and the column direction respectively, and finally formed not an
overall global correlation description but the correlation on each row and column, which helps
the network to use data more flexibly, without having to reorganize the information before using
it as in the previous mechanism; (2) In the previous non-transformer method, when the global
information and local information are fused, the activation function is generally used to construct
a threshold mechanism to determine whether the global information is integrated. The aggregation
block uses the residual model (does not use the activation function), and the integration of global
information is reflected in the finally learned block parameters, this processing method can reduce
the amount of calculation, and at the same time make the gradient change more robust, which is
conducive to the use of more aggressive activation functions.

Another point to note is that the feature encoding of AFNet is different from the position encoding
used in ViT. The use of positional encoding in the transformer is a very necessary mechanism in
natural language processing. Position encoding usually uses two ideas, one is to construct random
data to represent the position, and the other is to construct a set of position parameters for the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:12 Y. Yang et al.

Table 2. Network specification. AFB: Aggregation Feature Block; Exp Ratio: Expansion Ratio in
MobileNetV2[45] block.

Component Input Operator Exp Ratio #Out Stride

Stem 256 × 256 × 3 AB-Single 3 × 3 - - -
256 × 256 × 3 Conv2D 3 × 3 - 16 2

Layer 1 128 × 128 × 16 AFB 3 × 3 1 16 1

Layer 2 128 × 128 × 16 AFB 3 × 3 4 24 2
64 × 64 × 24 AFB 3 × 3 3 24 1

Layer 3
64 × 64 × 24 AFB 3 × 3 3 40 2
32 × 32 × 40 AFB 3 × 3 3 40 1
32 × 32 × 40 AFB 3 × 3 3 40 1

Layer 4 32 × 32 × 40 AFB 3 × 3 6 80 2
16 × 16 × 80 AFB 3 × 3 6 80 1

Layer 5 16 × 16 × 80 AFB 3 × 3 6 160 2
Head 8 × 8 × 160 Conv2D 1 × 1 - 1280 1

Classifier 8 × 8 × 1280 Global Avg Pool - 1280 1
1 × 1 × 1280 Linear - n classes -

network to learn by itself. The aggregation block first integrates information in the row or column
direction, and then through one-dimensional deep convolution, the network learns the form of
integrating this integrated information into local information by itself, which we call this process
feature encoding, that is, the network will learn a method that encodes the information collected
on rows and columns into appropriate features for input to the network.

4 EXPERIMENT
4.1 Datasets
In order to assess the proposed model, we carry out experiments on four food datasets: ETHZ
Food-101[1], Vireo Food-172[4], UEC Food-256[21] and ISIA Food-500[35]. ETHZ Food-101 has
101 categories, with 75,750 images used for training and 25,250 for validation. Vireo Food-172 has
172 Categories, 66,071 images are used for training, and 44,170 images are used to validate. UEC
Food-256 contains 256 distinct classes, with 22,095 images allocated for training and 9,300 images
allocated for validation. The ISIA Food-500 dataset comprises 500 types of food from Wikipedia,
with 239,378 images employed for training and 120,142 images used for validation.

4.2 Training Settings
We train our models using an input image resolution 256×256, a batch size of 256, and SGD[2]
optimizer with 0.9 momentum. We use the initial learning rate of 0.1 for the first 3,000 iterations
of linear warm-up and then a cosine schedule with the learning rate ranging from 0.0004 to
0.8. Furthermore, we use the same data augmentation method as MobileViTv2[31] for image
preprocessing.
The model weights were initialized using PyTorch’s default parameter randomization method,

with no pre-trained models utilized; all models were trained from scratch. The focus was on
constructing an efficient foundational model for food image recognition, emphasizing the intrinsic
capabilities of themodels. In image recognition tasks, using parameters pre-trained on other datasets
generally enhances model performance, and this is likely true in our work as well. However, even
when pre-trained models are derived from the same dataset, variations in image augmentation
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techniques and hyperparameter settings can result in different outcomes. This variability makes
it challenging to conduct a fair comparison of direct model performance. In related work on
lightweight image recognition, the primary concern is typically the comparison of independently
trained model results.

4.3 Experiment Results
Results on ETHZ Food-101. Results from ETHZ Food-101 are displayed in Table 3. The results
have been categorized based on a similar number of parameters. Our model is superior to all
others in six parameter ranges. Among all models with less than 1M parameters, our model
achieves 87.3% top-1 accuracy which is 13% higher than ShuffleNetV2[28]. Among all models
with 1M-2M parameters, our model achieves 88.4% top-1 accuracy which is 7.2%/6.0%/1.4% higher
than GhostNetV2[53], MobileNetV3[12], and MobileViTv2[31] respectively. In around 2-3M, 3-4M
parameter budget models, our model’s top-1 accuracy is 88.7% /88.8%/88.6%, which is at least
1 percentage point higher than the accuracy achieved by the current mainstream lightweight
models like MobileViTv2[31], MobileNetV3[12], GhostNetV2[53] and EfficientNet[51]. Our model
also achieves the highest top-1 accuracy of 88.4% in the parameter range of 3-5M, surpassing
MobileViTv2[31], MobileNetV3[12] and MobileNetV2[12] by 0.8%, 2.2% and 1.9%, respectively. In
the parameter size range of 5 to 10M, MobileViTv2[31] shows the best performance, but compared
with our proposed AFNet, the performance is comparable but the parameter size is 6.6M higher,
and the FLOPs are four times higher. We also compare with recent light-weight food recognition
networks, the results show that the recognition accuracy of our network (86.4%) is much higher
than that of LNAS-NET[52](75.9%) and LTBDNN(TD-192)[48](76.8%) in the case of much fewer
parameters.
On the other hand, although AFNet surpasses other state-of-the-art lightweight models in

terms of accuracy, it still falls short compared to our prior work, EHFR-Net [47]. AFNet’s primary
advantage lies in its lower computational cost. The smallest model, AFNet-0.5, achieves nearly
83% accuracy with just 0.3M parameters and 69M FLOPs. While AFNet-1.75 has a lower accuracy
compared to EHFR-Net -0.75, it consumes half the computational resources. Similarly, the AFNet-
2.0 model has an accuracy approximately 2% lower than that of EHFR-Net-1.0, yet the latter’s
computational cost is more than double that of the former. AFNet maintains control over parameter
count and computational load, whereas EHFR-Net explores a wider range of parameters, resulting
in a significant increase in FLOPs.
The design philosophy of the AFNet model differs from that of hybrid models based on Trans-

formers, such as EHFR-Net [47] and MobileViT[31]. These latter models combine Transformers
with convolutional networks, leveraging the capabilities of the Transformer Encoder to enhance
accuracy. However, an unavoidable drawback is the generally high computational cost associated
with Transformers. In contrast, AFNet employs a purely convolutional design, utilizing Aggregate
Blocks to achieve lower computational cost with fewer parameters. This approach aims to create a
lightweight model that balances accuracy and computational efficiency more effectively.
Results onVireo Food-172.Table 4 presents results onVireoFood-172. Compared toMobileViTv2[31]
in 0-1M, 1-2M, 2-3M, and 3-4M parameter range, our model achieves better top-1 accuracy of 88.0%,
88.9%, 89.4%, 89.5 with much fewer parameters. Our analysis concludes that the superior results on
172 are due to the data set comprising a larger selection of Chinese dishes, as well as its ingredients
being more varied.
Results on UEC Food256. As seen in Table 5, the results are similar to the other two datasets. Our
models achieve the highest top-1 accuracy in most parameter ranges. Compared to MobileViTv2[31],
our model has fewer parameters and FLOPs. Compared to MobileNetV3 [12], ShuffleNetV2[28] and
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Table 3. Performance comparison on ETHZ Food-101. AFNet-x: x denotes the width multiplier on the base
model.

Method Top-1 Acc. #Params↑ #FLOPs

AFNet -0.5 82.9% 0.3M 69.1M
ShuffleNetV2 -0.5[28] 74.3% 0.5M 41.6M
AFNet -0.75 85.8% 0.5M 134M
AFNet -1.0 86.4% 0.6M 164M
AFNet -1.25 87.3% 0.9M 265M
MobileViTv2 -0.5[31] 87.0% 1.1M 480M
AFNet -1.5 87.8% 1.3M 363M
ShuffleNetV2 -1.0[28] 78.0% 1.4M 149M
MobileNetV3 -0.5[12] 82.4% 1.5M 73M
AFNet -1.75 88.4% 1.7M 474M
GhostNetV2 -0.5[53] 81.2% 1.7M 54M
EHFR-Net -0.75 [47] 90.4% 1.8M 981.9M
AFNet -2.0 88.3% 2.1M 576M
MobileViTv2-0.75[31] 87.2% 2.5M 1051M
ShuffleNetV2 -1.5[28] 80.3% 2.6M 304M
AFNet -2.25 88.7% 2.7M 756M
MobileNetV3 -0.75[12] 85.5% 2.8M 162M
EHFR-Net -1.0 [47] 90.7% 2.8M 1238.5M
AFNet -2.5 88.8% 3.3M 892M
MobileOne S1[54] 87.5% 3.7M 857M
MobileNetV3 -1.0[12] 86.2% 4.3M 219M
MobileViTv2-1.0[31] 87.6% 4.4M 1843M
EHFR-Net -1.25 [47] 91.1% 4.5M 2104.5M
EfficientNet B0[51] 85.2% 4.7M 567M
GhostNetV2 -1.0[53] 83.6% 5.0M 177M
ShuffleNetV2 -2.0[28] 82.0% 5.6M 596M
MobileOne S2[54] 88.0% 6.0M 1337M
MobileNetV3 -1.25[12] 86.2% 6.4M 367M
EHFR-Net -1.5 [47] 91.3% 6.4M 2985.5M
MobileViTv2 -1.25[31] 88.3% 6.9M 2856M
GhostNetV2 -1.3[53] 84.8% 7.8M 283M
MobileOne S3[54] 88.5% 8.3M 1942M
MobileNetV3 -1.5[12] 86.5% 8.6M 500M
MobileViTv2-1.5[31] 88.6% 9.9M 4089M
UniNet B0[25] 81.2% 10.3M 554M
UniNet B1[25] 84.1% 10.3M 1117M
GhostNetV2 -1.6[53] 85.5% 11.2M 415M
MobileOne S4[54] 89.9% 13.1M 3041M
MobileViTv2 -1.75[31] 88.9% 13.4M 5544M
GhostNetV2 -1.9[53] 85.7% 15.3M 573M
MobileViTv2-2.0[31] 89.5% 17.5M 7218M
LNAS-NET[52] 75.9% 1.8M -
LTBDNN(TD-192)[48] 76.8% 12.2M -
AFNet -1.0 86.4% 0.6M 164M
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Table 4. Performance comparison on Vireo-172. AFNet-x: x denotes the width multiplier on the base model.

Method Top-1 Acc. #Params↑ #FLOPs

AFNet -0.5 83.7% 0.4M 69M
ShuffleNetV2 -0.5[28] 77.0% 0.5M 42M
AFNet -0.75 86.5% 0.6M 134M
AFNet -1.0 87.1% 0.7M 165M
AFNet -1.25 88.0% 1.0M 265M
MobileViTv2 -0.5[31] 87.3% 1.2M 480M
AFNet -1.5 87.8% 1.3M 363M
ShuffleNetV2 -1.0[28] 81.0% 1.4M 149M
MobileNetV3 -0.5[12] 83.0% 1.6M 73M
GhostNetV2 -0.5[53] 81.8% 1.8M 54M
AFNet -1.75 88.9% 1.9M 474M
AFNet -2.0 89.0% 2.3M 576M
MobileViTv2-0.75[31] 88.0% 2.5M 1051M
ShuffleNetV2 -1.5[28] 82.4% 2.7M 304M
AFNet -2.25 89.4% 2.9M 756M
MobileNetV3 -0.75[12] 85.9% 2.9M 162M
AFNet -2.5 89.5% 3.5M 919M
MobileOne S1[54] 88.2% 3.8M 857M
MobileNetV3 -1.0[12] 86.7% 4.4M 219M
MobileViTv2-1.0[31] 88.2% 4.5M 1843M
EfficientNet B0[51] 83.6% 4.8M 567M
GhostNetV2 -1.0[53] 84.7% 5.1M 177M
ShuffleNetV2 -2.0[28] 83.8% 5.7M 597M
MobileOne S2[54] 88.3% 6.2M 1337M
MobileNetV3 -1.25[12] 86.9% 6.5M 367M
MobileViTv2 -1.25[31] 87.9% 6.9M 2856M
GhostNetV2 -1.3[53] 85.7% 7.9M 283M
MobileOne S3[54] 88.9% 8.5M 1942M
MobileNetV3 -1.5[12] 86.5% 8.7M 500M
MobileViTv2-1.5[31] 88.6% 10.0M 4089M
UniNet B0[25] 82.7% 10.4M 554M
UniNet B1[25] 84.8% 10.4M 1117M
GhostNetV2 -1.6[53] 86.2% 11.3M 415M
MobileOne S4[54] 90.1% 13.3M 3041M
MobileViTv2 -1.75[31] 89.1% 13.5M 5544M
GhostNetV2 -1.9[53] 86.0% 15.4M 573M
MobileViTv2-2.0[31] 89.4% 17.6M 7218M

EfficientNet B0[51], our model achieves much higher top-1 accuracy with fewer parameters but
slightly more FLOPs.
Results on ISIA Food-500. Table 6 presents experimental results on dataset ISIA Food-500.
Because of its wide range, large scale, and offering of both Chinese and Western food, it is harder
for food recognition in Food-500. Even so, our proposed AFNet still achieves competitive results:
compared with SOTA ViT-based lightweight network MobileViTv2, the FLOPs are greatly reduced
with almost the same recognition rate. Compared to the SOTA CNN-based light-weight network
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Table 5. Performance comparison on UEC Food-256. AFNet-x: x denotes the width multiplier on the base
model.

Method Top-1 Acc. #Params↑ #FLOPs

AFNet -0.5 65.5% 0.5M 69M
ShuffleNetV2 -0.5[28] 50.2% 0.6M 42M
AFNet -0.75 68.7% 0.7M 134M
AFNet -1.0 69.3% 0.8M 165M
AFNet -1.25 70.0% 1.2M 266M
MobileViTv2 -0.5[31] 69.1% 1.2M 466M
AFNet -1.5 70.4% 1.6M 363M
ShuffleNetV2 -1.0[28] 55.2% 1.5M 149M
MobileNetV3 -0.5[12] 62.1% 1.7M 74M
GhostNetV2 -0.5[53] 61.1% 1.9M 54M
AFNet -1.75 71.4% 2.1M 474M
AFNet -2.0 70.7% 2.5M 576M
MobileViTv2-0.75[31] 69.8% 2.6M 1052M
ShuffleNetV2 -1.5[28] 57.5% 2.7M 304M
MobileNetV3 -0.75[12] 64.9% 3.0M 162M
AFNet -2.25 71.8% 3.1M 756M
AFNet -2.5 71.8% 3.8M 919M
MobileOne S1[54] 68.1% 3.9M 857M
MobileNetV3 -1.0[12] 65.5% 4.5M 219M
MobileViTv2-1.0[31] 70.0% 4.5M 1843M
EfficientNet B0[51] 64.0% 4.9M 567M
GhostNetV2 -1.0[53] 63.9% 5.2M 177M
ShuffleNetV2 -2.0[28] 60.1% 5.9M 597M
MobileOne S2[54] 68.3% 6.4M 1337M
MobileNetV3 -1.25[12] 65.7% 6.6M 367M
MobileViTv2 -1.25[31] 71.2% 7.0M 2856M
GhostNetV2 -1.3[53] 65.0% 8.0M 283M
MobileOne S3[54] 69.2% 8.7M 1942M
MobileNetV3 -1.5[12] 67.1% 8.8M 501M
MobileViTv2-1.5[31] 71.2% 10.0M 4090M
UniNet B0[25] 58.7% 10.5M 554M
UniNet B1[25] 61.5% 10.5M 1117M
GhostNetV2 -1.6[53] 65.5% 11.4M 415M
MobileOne S4[54] 71.7% 13.4M 3041M
MobileViTv2 -1.75[31] 71.4% 13.6M 5544M
GhostNetV2 -1.9[53] 66.1% 15.5M 573M
MobileViTv2-2.0[31] 71.5% 17.7M 7219M

MobileNetV3[12], our model has significantly better performance with similar parameters: AFNet-
2.5 obtain 63.7% top-1 accuracy, which is +3.2% higher than that of MobileNetV3[12](60.5%) with a
similar amount of parameters.
Our experimental results confirm that for food recognition tasks, hybrid structure networks

incorporating global information collection components outperform pure CNN networks in achiev-
ing higher performance. Our AFNet model was compared with several state-of-the-art (SOTA) pure
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Table 6. Performance comparison on ISIA Food-500[35].

Method Top-1 Acc. #Params↑ #FLOPs

AFNet -0.5 56.3% 0.8M 70M
ShuffleNetV2 -0.5[28] 51.7% 0.9M 42M
AFNet -0.75 59.9% 1.0M 135M
AFNet -1.0 60.7% 1.1M 165M
MobileViTv2 -0.5[31] 61.9% 1.2M 480M
AFNet -1.25 61.6% 1.6M 266M
AFNet -1.5 62.6% 2.0M 364M
MobileNetV3 -0.5[12] 58.5% 2.1M 364M
GhostNetV2 -0.5[53] 56.9% 2.2M 55M
AFNet -1.75 62.6% 2.6M 475M
MobileViTv2-0.75[31] 62.2% 2.7M 1052M
ShuffleNetV2 -1.5[28] 56.2% 3.0M 304M
AFNet -2.0 63.2% 3.2M 577M
MobileNetV3 -0.75[12] 60.5% 3.4M 162M
AFNet -2.25 63.4% 3.8M 757M
AFNet -2.5 63.7% 4.5M 920M
MobileViTv2-1.0[31] 63.0% 4.6M 1844M
MobileNetV3 -1.0[12] 63.3% 4.8M 219M
EfficientNet B0[51] 60.1% 5.2M 567M
GhostNetV2 -1.0[53] 60.5% 5.5M 177M
ShuffleNetV2 -2.0[28] 59.0% 6.4M 597M
MobileNetV3 -1.25[12] 62.5% 6.9M 367M
MobileViTv2 -1.25[31] 63.3% 7.2M 2856M
GhostNetV2 -1.3[53] 61.0% 8.3M 283M
MobileNetV3 -1.5[12] 62.9% 9.1M 501M
MobileViTv2-1.5[31] 63.6% 10.2M 4090M
GhostNetV2 -1.6[53] 61.3% 11.8M 416M
MobileViTv2 -1.75[31] 61.9% 13.8M 5544M
GhostNetV2 -1.9[53] 61.9% 15.8M 573M
MobileViTv2-2.0[31] 63.6% 18.0M 7219M

CNN lightweight models, and the experimental results corroborate the limitations of pure CNN
networks.
Food images differ from ordinary images mainly in several aspects: (1) Food images possess

fine-grained features, with the same ingredient typically scattered throughout the entire image,
composed of multiple separate color blocks, whereas ordinary images such as cats, dogs, or cups
usually consist of continuous color blocks on the image plane; (2) In existing food datasets, dishes
are typically centered in the image and occupy most of the image plane with a small background,
whereas in ordinary image datasets, target objects may be located anywhere in the image and have
a larger background. Therefore, in food image recognition, the influence of image background
is smaller; (3) Foods are often composed of multiple ingredients, and during recognition, factors
such as the proportion, area, and irregular shape of different ingredients influence the recognition
process. The color mixing and shape composition in food images are more diverse, whereas in
ordinary images, different target objects often have a certain distance or clearer boundaries.

These characteristics of food images make the collection of global correlation information partic-
ularly important for food image recognition tasks. Pure CNN models require deeper networks to
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Table 7. Performance comparison on ImageNet-1K[6] with Comparable Parameter Ranges.

Method Top-1 Acc. #Params #FLOPs

MobileNetV1[14] 70.6% 4.2M 575M
ShuffleNet -2.0[60] 73.7% 5.4M 524M
NasNet-A[41] 74.0% 5.3M 564M
MobileNetV3 Large -1.0[12] 75.2% 5.4M 219M
GhostNet -1.0[9] 73.9% 5.2M 141M
GhostNetV2 -1.0[53] 75.3% 6.1M 167M
ShuffleNetV2 -2.0[28] 74.5% 5.5M 557M
EfficientNet B0[51] 77.1% 5.3M 390M
MobileViT S[30] 78.4% 5.6M 2000M
MobileViTv2 -1.0[31] 78.1% 4.9M 1800M
MobileOne S1[54] 75.9% 4.8M 825M
MobileFormer-96M[5] 72.8% 4.6M 96M
AFNet -2.0 74.5% 4.4M 578M

Table 8. Performance comparison on ImageNet-1K[6] with Comparable FLOPs Ranges.

Method Top-1 Acc. #Params #FLOPs

MobileNetV2 -1.4[45] 74.7% 6.9M 585M
GhostNetV2 -1.6[53] 77.8% 12.3M 399M
ShuffleNetV2 -2.0[28] 74.5% 5.5M 557M
MobileViT XXS[30] 69.0% 1.3M 400M
MobileViTv2 -0.5[31] 70.2% 1.4M 500M
MobileFormer-508M[5] 79.3% 14.0M 508M
AFNet -2.0 74.5% 4.4M 578M

better extract the correlation between distant pixels on the image plane, while networks incorpo-
rating global information collection components do not. However, very deep CNN networks can
lead to the inability to achieve lightweight goals. From our experimental results, it can be seen that
the performance of AFNet, MobileViTv2, and MobileNetV3 is significantly higher than that of pure
CNN networks. Considering both parameter count and computational complexity, AFNet achieves
the best performance.
Results on ImageNet-1K. From Table 7, it can be observed that AFNet outperforms most com-
parison models, achieving higher performance with similar parameter counts. The MobileVit[30]
model exhibits notably higher accuracy than other models, but its FLOPs are several times higher
than those of other models. AFNet’s performance is comparable to that of MobileNetV3[12] and
MobileOne[54], with MobileNetV3[12] achieving higher accuracy with significantly fewer FLOPs,
albeit at the expense of higher parameter count compared to AFNet. MobileOne[54] achieves
significantly higher accuracy than AFNet, but its FLOPs are also higher.

Table 8 lists several typical models with FLOPs similar to AFNet 2.0. In terms of accuracy, AFNet
performs moderately well, significantly outperforming MobileNetV2[45] and ShuffleNetV2[28]
while having substantially fewer parameters at similar levels of accuracy and FLOPs. It achieves
lower accuracy compared to MobileFormer[5] and GhostNetV2[53], but the parameter count of the
latter two models is 2-3 times higher than that of AFNet.
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Overall, AFNet demonstrates competitive performance on general image recognition datasets
while better balancing parameter count and FLOPs. However, due to its block structure designed
for food image features, experiments on food datasets reveal that AFNet performs exceptionally
well, outperforming all other lightweight models.

4.4 Qualitative Analysis
Different from the image recognition mechanism of the traditional local convolution, the network
including the aggregation block tends to collect similar color patch information globally in the
image plane. Fig. 5 shows the comparison by the method provided by Grad-CAM: results are
obtained using and without using aggregation block. In Fig. 5, the first row is the original image,
the second row is heat maps generated without using an aggregation block, and the third row is
heat maps generated by using an aggregation block. As can be seen from Fig. 5: (1) Using only
local convolution tends to identify locally clustered patches, which can be well-focused when they
appear in food images; When the background is relatively monotonous and contains similar color
blocks, the local convolution will also focus on the background incorrectly and cause recognition
failure. (2) Convolution with aggregation block tends to collect similar color patches globally, and
its focal area tends to be wider than local convolution, covering multiple color patches at the same
time. (3) As shown in the last five columns of each figure, in some cases, the convolution without
aggregation block fails to recognize because it focuses on the background, while the mechanism
with aggregation block can correctly lock the target area for correct recognition. In summary above
results show that the aggregation block is more suitable to the scattered-color features of food
images and can achieve better recognition results.
It is readily apparent from Fig. 5 that a phenomenon is observable: the visual effect of a square

shape is present in the third row of Fig. 5(a), (c), and (d), while absent in Fig. 5(b). Here, we provide
an analysis and explanation of this phenomenon: The Aggregate Block collects related information
of homogeneous color blocks dispersed in different regions of the image through row-column
integration. If there are many blocks of the same color in the same row or column, stronger related
information will be generated in that row or column. This information is then attached to the
image plane through broadcasting mechanism, making it easy to identify rectangular or bar-shaped
focus areas in the heatmap, as illustrated in Fig. 5(a), (c), and (d). However, when the background
influence on food images is minimal and the dishes occupy the main position in the image, or
when the distribution of food color blocks is more concentrated, AFNet’s heatmap can still form
irregularly shaped high-quality focuses. This is likely due to the use of residual models in the
design of our network blocks, which automatically learn the proportion of local information and
global-related information. Fig. 5(b) presents the experimental results on the Food172 dataset, which
is known for its high image quality, where many images satisfy the characteristics mentioned above,
thus, no rectangular visual effects are observed. To demonstrate that AFNet can indeed generate
high-quality focus, we included some instances of this situation in Fig. 5(b). In fact, both scenarios
exist in the heatmap of the Food172 dataset. Fig. 5b depicts the heatmap from the original paper
(which can achieve irregular focus), while Fig. 6 shows heatmaps created from a different set of
instances (rectangular focus blocks), exhibiting a similar rectangular appearance as in Fig. 5(a), (c),
and (d).

4.5 Ablation Study
In this section, we ablate important design elements in the proposed model using image classifica-
tions on four datasets.
Effectiveness of Aggregation Block. Ablations of the Aggregation Block effect on four datasets
are reported in Table 9. The models with aggregation blocks obtains more higher top-1 accuracy:
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(a) Examples from dataset ETHZ Food-101.

(b) Examples from dataset Vireo Food-172.

(c) Examples from dataset UEC Food256.

(d) Examples from dataset ISIA Food-500.

Fig. 5. Visualization of experimental results comparison. (a)(b)(c)(d): Examples from dataset Food101, 172, 256,
500. The first row is the original image, the second row is the heat map without aggregation, and the third
row is the heat map with aggregation; the first five columns have achieved good recognition results, and the
last five columns only use aggregation recognition correct, if aggregation is not used, the recognition will fail.
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Fig. 6. Another Visualization of experimental results from Vireo Food-172.

Table 9. Ablation study. Comparison of AFNet variants with and without Aggregation Block/SoftReLU
activation function when trained on Food-101, Food-172, Food256, Food-500 dataset.

Dataset Method Top-1 Acc. #Params #FLOPs

Food-101

w/o Aggregation Block 84.75% 0.61M 162.17M
w/ Hardswish 86.21% 0.61M 164.36M
w/ ReLU 85.62% 0.61M 164.36M
AFNet-1.0 86.43% 0.61M 164.36M

Food-172

w/o Aggregation Block 86.38% 0.70M 162.26M
w/ Hardswish 87.08% 0.70M 164.45M
w/ ReLU 86.75% 0.70M 164.45M
AFNet-1.0 87.10% 0.70M 164.45M

Food256

w/o Aggregation Block 68.29% 0.81M 162.37M
w/ Hardswish 68.55% 0.81M 164.56M
w/ ReLU 68.51% 0.81M 164.56M
AFNet-1.0 69.31% 0.81M 164.56M

Food-500

w/o Aggregation Block 59.64% 1.12M 162.37M
w/ Hardswish 60.72% 1.12M 164.56M
w/ ReLU 60.21% 1.12M 164.56M
AFNet-1.0 60.74% 1.12M 164.56M

86.43%(Food-101), 87.10%(Food-172), 69.31%(Food-256) and 60.74%(Food-500) compared to models
without aggregation blocks: 84.75%(Food-101), 86.38%(Food-172), 68.29%(Food-256) and 59.64%(Food-
500). That indicates the aggregation block is effective to improve model accuracy by gathering
long-range features.
Activation Function. By virtue of the aggregation block cutting down on the number of network
parameters and size, a more ambitious activation function named SoftReLU has been adopted
during network optimization in our work. Here we compared the effectiveness of the proposed
activation function SoftReLU with two typical activation functions Hardswish and ReLU. As
seen in Table 9, the models using SoftReLU achieve higher top-1 accuracy: 86.43%(Food-101),
87.10%(Food-172), 69.31%(Food-256) and 60.74%(Food-500), compared to models using Hardswish
and ReLU: 86.21%/85.62%(Food-101), 87.08%/86.75%(Food-172), 68.55%/68.51%(Food-256) and 60.72%/
60.21%(Food-500). The results show that the SoftReLU activation function helps to find better
solutions.
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5 CONCLUSIONS
With the intention of focusing on the characteristics of food images, a lightweight CNN-based
model AFNet is proposed for the recognition of food images. The model can proficiently collect both
local and global features from food images. We developed a convolution based on the residual model,
which encodes global features by combining information from the row and the column. Combining
the aggregation block with classic local convolution creates a framework that serves as the backbone
of the network. On the basis of the efficient utilization of the parameters by aggregation blocks,
we have developed a lightweight network of image recognition for food, with fewer layers and
smaller scales, and supported by the new activation function SoftReLU. Experimental results on four
popular databases of food images show that our method achieves the best performance compared
to existing CNN-based, ViT-based, and hybrid lightweight network models.
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