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Abstract. Existing asymmetric retrieval methods primarily rely on align-
ing global features to transfer semantic information. However, they often
struggle to convey knowledge effectively across different network layers,
limiting fine-grained alignment in feature representation spaces. To ad-
dress this limitation, we propose a Cross-Layer and Selective Distillation
(CLSD) framework. It first introduces a semantic-aware cross-layer fea-
ture distillation mechanism, where an attention-guided soft layer align-
ment strategy enables the student model to dynamically select and in-
tegrate the most relevant semantic knowledge from multiple intermedi-
ate teacher layers, based on its own layer’s semantic requirements. This
alleviates the knowledge transfer challenges arising from architectural
asymmetry. Furthermore, considering the importance of ranking consis-
tency in fine-grained food image retrieval, we propose a decoupled dif-
ferential relation distillation approach based on unambiguous samples.
This method emphasizes the teacher model’s discriminative power and
ranking behavior on unambiguous samples, while filtering out noisy sig-
nals from ambiguous ones. As a result, the student learns more reliable
relative relationships between samples, ensuring consistency in ranking
order between query and gallery features. Extensive experiments on four
benchmark datasets demonstrate that our method consistently surpasses
existing state-of-the-art techniques, highlighting its effectiveness in asym-
metric fine-grained retrieval tasks.

Keywords: Asymmetric image retrieval - Knowledge distillation - Cross-
Layer distillation.

1 Introduction

Current mainstream deep learning image retrieval [6, 7] relies on large networks
to extract discriminative features, typically deployed on cloud servers. As shown
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in Fig. 1(a), this “cloud extraction, centralized matching” paradigm faces chal-
lenges in edge device applications (such as food image retrieval on smartphones),
including network latency and server computation burden. Reducing online com-
putation and communication costs is the key to efficient and scalable image
retrieval.

Asymmetric image retrieval [2,21], an emerging solution, effectively balances
performance and efficiency by deploying a lightweight network on the client
side to extract query features and utilizing features extracted by a large model
on the server side for matching. As shown in Fig. 1(b), this architecture enables
efficient retrieval with minimal client-side computation. However, this constitutes
an implicit knowledge distillation mechanism. The core challenge lies in how
the lightweight student model can effectively inherit the semantic capability of
the large model under structural heterogeneity. Introducing explicit knowledge
distillation strategies is necessary.

In the framework of Knowledge Distillation, the distillation effect largely de-
pends on the chosen “knowledge type”[13]. Feature distillation has made sig-
nificant progress in recent years and has become one of the state-of-the-art
methods [27]. However, feature-based distillation has limited application in fine-
grained image retrieval (such as food image retrieval). This is mainly due to: 1)
The fine-grained differences in food images require high semantic understanding
in intermediate layers, and whether intermediate layer features can accurately
express complex semantics directly affects student performance. 2) The signifi-
cant structural difference between lightweight student models on the edge side
and large models on the cloud makes traditional feature distillation’s static layer
alignment prone to semantic mismatch.
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Fig. 1: Comparison of image retrieval architectures: (a) Symmetric image re-
trieval network architecture. (b) Asymmetric image retrieval network architec-
ture.

Analyzing the limitations of feature alignment in networks of different capac-
ities when handling fine-grained food images, we believe that simply pursuing
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feature representation similarity is insufficient to effectively transfer the teacher
model’s discriminative capability, especially in image retrieval which focuses on
relative order. A more practical goal should be to maintain the consistency of
the relative order of returned images. Given this, we propose a new distillation
objective that focuses on learning the pairwise similarity differential relation-
ships between samples. However, we found that not all samples are beneficial
for retrieval order consistency. Extremely similar-looking samples may lead to
erroneous differential relationships and mislead the student model.
To address these challenges, we propose the following contributions:

— We propose a semantic-aware cross-layer feature distillation method that
dynamically selects the most relevant semantics from multiple intermediate
teacher layers based on the student model’s layer-specific semantic require-
ments, effectively guiding the student to learn deeper features.

— We further propose a decoupled differential distillation method based on un-
ambiguous samples to ensure retrieval order consistency between the lightweight
query network and the large gallery network.

— Experimental results on multiple image retrieval benchmark datasets demon-
strate that our proposed method significantly improves retrieval accuracy
while maintaining the lightweight nature of the student model, outperform-
ing existing mainstream distillation strategies.

2 Related Work

2.1 Knowledge Distillation

Knowledge Distillation (KD) is a prevalent technique for transferring knowledge
from a teacher network to a student network. KD methods are generally catego-
rized into three types: Logit Distillation, Relationship Distillation, and Feature
Distillation [13].

Logit Distillation This method aligns the output logits of the student with
those of the teacher, allowing the student to learn the teacher’s prediction ten-
dencies and inter-class relationships. Methods such as NTCE-KD [9] enhance
the role of non-target classes in the logits for more effective knowledge transfer.

Relationship Distillation This method focuses on aligning the relation-
ships derived from the intermediate features of student and teacher networks.
Methods such as SPKD [22] transfer pairwise similarity knowledge by minimizing
the distance between their cosine similarity matrices.

Feature Distillation This method leverages multi-level intermediate fea-
tures from the teacher to guide student learning. Methods such as FitNet [20]
minimize the distance between the intermediate features of student and teacher
networks to improve representational alignment.

2.2 Asymmetric Image Retrieval

In asymmetric retrieval, compatible gallery/query embeddings are vital due
to distinct architectures. Feature distillation effectively aligns these features.
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AML [2] first applied KD, using query (student) features as anchors for met-
ric learning with gallery (teacher) features (positive/negative). Later methods
added pairwise similarity knowledge, e.g., CSD [25] minimizing context similarity
matrix differences. Recognizing strict one-to-one constraints for lower-capacity
students, recent work favors ranking-based approaches with relaxed constraints.
Examples include ROP [24] using sigmoid for binary ranking and D3still [26]
optimizing relational similarity differences for consistent retrieval order.
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Fig. 2: Overview of the Proposed CLSD Method. Our L;,4 comprises the differ-
ential distillation loss L;pq for inconsistent pairs and Le,pq for consistent pairs.

3 Method

This section details our proposed knowledge distillation method for asymmetric
image retrieval. Its core strategies include: 1) semantic alignment formula-guided
cross-layer feature distillation; and 2) decoupled differential relation distillation
based on unambiguous samples.

3.1 Formulation and Background

Fig. 2 illustrates our method for knowledge transfer using deep features extracted
from the query network and the gallery network. First, given a batch of n samples
as input x = {x1,x2, ..., z, }, we scale them separately to a low-resolution sample
set x! = {z}, 7}, ...,2} and a high-resolution sample set " = {z%, 25, ..., 2"}.
Then, we use a lightweight query network 6,(-) and a large gallery network
04(-) to convert the low-resolution and high-resolution images into normalized
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Fig. 3: (a) Attention Weight Calculation for Cross-Layer Distillation. (b) Un-
ambiguous Samples Selection (UnamSel).

two-dimensional vectors as follows:
Vg :oq(Xé)an:og(X?)vi:]-a?vmana (1)

where v; represents a normalized D-dimensional vector extracted from the i-th
image. Additionally, to achieve effective knowledge transfer between the query
network and the gallery network, we also extract intermediate layer features of
the model. The multi-layer features of the student network are represented as
F* = [f:, f5,,. fi. ], and the teacher network extracts corresponding multi-
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layer features F* = [ff , ff ..., f{ ].

3.2 Cross-Layer Feature Distillation

As shown in Fig. 3(a), we propose an attention allocation mechanism for student
layers to establish soft associations with semantically relevant teacher layers. For
each student layer f3 , an attention mechanism calculates its weight a(s;, ;) with
each teacher layer, ensuring Z;L:l a(s;, ) =1,Vs; € [1, ..., s1]. To align spatial
dimensions for distance calculation, student feature maps are projected into ¢y,
independent forms:

fs, = Proj(fs, € R Corher o ) 1y € [1,...,tr), (2)

where ssl/ € Rb>euxhy xwy Fach Proj(-,-) uses stacked 1 x 1, 3 x 3, and 1 x 1
convolutions for feature transformation.

To optimize distillation, pairwise similarity matrices effectively measure in-
trinsic semantic similarity for layer association:

AL = RO R, AL =R(f) - R(F)T, 3)

S
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where R(-) : RU*exhxw _ Rbxehw g g reshaping operation. Based on self-
attention, these matrices are projected via MLPs into query and key vectors
to alleviate noise/sparsity:

Qu = MLPo(A3) K, = MLPy(AL). (4)
The attention weight s, 4 is then calculated:

eQZ;Ktl
tr QT K.~ (5>
1€

Qs ty) =

This attention mechanism alleviates hierarchical mismatch and integrates pos-
itive guidance from multiple teacher layers. The complete training process is
summarized in Algorithm 1.

Algorithm 1: Calculate Cross-Layer Distillation Loss

Input: A mini-batch B of size b; a pre-trained teacher model with
parameters §,; a student model with randomly initialized
parameters 6,

Output: Calculated cross-layer distillation loss Lgemcrnp

Forward B through 6, and 6, to obtain intermediate features f{ and f

across layers;

Construct pairwise similarity matrices Af, and A3 (Eq. 3);

Perform attention allocation (Eq. 4-5);

Align feature maps via projection (Eq. 2);

/
S

Calculate cross-layer distillation loss Lgemcrnp using ffl, fo and gy, 1)
(Eq. 6);
return Lgsemcrnp;

The cross-layer distillation loss Lgemcorp is calculated using Mean Squared
Error (MSE) after semantic layer association and dimension projection:

n SL tr,

Lsemorn = Y 9 3 i(aa) MSE(fLy,, £25,)- (6)

i=1s;=1¢=1

3.3 Decoupled Differential Relation Distillation

We measure query-gallery similarity using cosine similarity. Given asymmetric
network capabilities, cosine similarity matrices G¢ and GY are computed in the
gallery network’s representation space:

Gl =vi(v)T e R @9 =vI(v9)T e R™", (7)
For Top-k retrieval, we obtain Top-k indices R € R™** from GY:

R = argsort(GY, dim = 2), (8)



Cross-Layer and Selective Distillation for Asymmetric Image Retrieval 7

where argsort(-) returns the top-k indices based on the descending order of cosine
similarity along the second dimension. Then, Top-k retrieval similarity matrices
C? € Rk and C9 € R™ ¥ are constructed:

C? = sort(G%,index = R), (9 = sort(GY,index = R), (9)

where sort(-) represents a function that sorts the cosine similarity matrix based
on the top-k indices. As depicted in Fig. 3(b), our method focuses on leveraging
unambiguous knowledge. We construct a binary mask m to evaluate sample fea-
tures using the trained gallery network’s unbiased fully connected layer, thereby
discarding ambiguous samples:

— {1 Ui =y (10)

0 otherwise,

where §j; = argmax (W9 (64(x"))), yi is the i-th sample’s label, and W9 € RM*P
are gallery network FC layer weights.

For feature representation knowledge, the feature distillation loss L aligns
query and gallery network representation spaces based on the Top-k retrieval
similarity matrix:

1 n %
f Zi:l m; <lz_; ( 7,1 1,1) > ( )

To model similarity difference knowledge between sample pairs, two difference
similarity matrices M? € R *k=Dx(k=1) apnq M9 ¢ R *=Dx(k=1) zre con-
structed from the Top-k retrieval similarity matrix:

M =Gl =Gl 1<G0<k—1. (12)
M, =Cl —Cly 1<ji<k—1 (13)

The difference distillation loss is then decomposed into L;;pq for inconsistent and
Lerpq for consistent sample pairs:

1
n k—1k—-1 q q l 2\ 2
1 Mi,j,l Mi,j,l B Mi,jyl
Li’l“pd = W Zml H <_ Mg 1 + |Mg . (14)

i=1""" 4 =1 1=1 1,5, .55l
2\ %
k—1k—1 q q g
1 . M ;4 M, — M,
Lcrpd — - m; H 2.77 5Js 5 2Js . (15)
2 i1 M ; ; = \Mij p M7
where, 41 is a constant set to 0.1 to avoid a small denominator. H(-) represents

a Heaviside step function.
During the training phase, the total loss function of the query network is
Ltudent as follows:

Lstudent = O4Lf + ﬁLirpd + ’YLcrpd + 6LSemCLD + 6LTRIPLET + CLLSRCE- (16)
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To further optimize the feature learning effect of the query network in asymmet-
ric image retrieval, we apply the triplet loss Lrrrprer to the features after pool-
ing, and calculate the cross-entropy loss Ly srcp on the Logits output. Where,
a, 3,7,6,€ and ( are all hyperparameters, used to adjust their contributions in
the total loss function.

4 Experiment

In this section, we conduct experiments on four widely used datasets to verify
the superiority of our method. These datasets include ETH Food-101 [1], Vireo
Food-172 [3], In-Shop Clothes Retrieval [12], and Stanford Online Products [14].

4.1 Datasets and Performance Metrics

ETH Food-101 (Food-101) [1] is a dataset of Western food images, containing
101,000 images from 101 categories. The training set includes 750 images per
category, totaling 75,750 images. The test set includes 250 images per category,
totaling 25,250 images.

Vireo Food-172 (Food-172) [3] is a large-scale food image dataset, con-
taining 110,241 images from 172 categories. The training set includes 172 cate-
gories, 66,071 images, and the test set includes 172 categories, 44,170 images.

In-Shop Clothes Retrieval (In-Shop) [12] is a clothes retrieval dataset,
containing 72,712 images, covering 7,986 categories. The training set includes
3,997 categories, totaling 25,882 images. The query set consists of 14,218 images,
belonging to 3,985 categories. The gallery set includes 3,985 categories, totaling
12,612 images.

Stanford Online Products (SOP) [14] is a widely used product recog-
nition dataset, containing a large number of 120,053 product images, covering
22,634 categories. The training set includes 59,551 training images, belonging to
11,318 categories, while the test set includes 60,502 images, belonging to 11,316
categories.

In the inference stage, we rank gallery images by cosine similarity between
query and gallery features, with higher scores indicating higher rank. We evaluate
accuracy using mean Average Precision (mAP) [15] and Rank-1 (R1) [10].

4.2 Implementation Details

We set hyperparameters (a« =200, =5,v=1,d =8,¢=1,{ = 1) and use Py-
Torch 2.0.1 [18] with CUDA 11.8 on an NVIDIA A800 GPU. For network train-
ing: The gallery network processes inputs at a resolution of 256 x256, while the
query network processes inputs at 64x64. Data augmentation includes z-score
normalization, random cropping [23], erasing (p=0.5), and horizontal flipping
(p=0.5). We use mini-batch SGD [8] (batch size 512, weight decay 5 x 107%,
momentum 0.9). The learning rate (initial 1 x 1073, warmed up to 1 x 1072
over 10 epochs, dropping at 40th epoch) follows a cosine annealing and linear
warm-up strategy for 120 total epochs.
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Table 1: Comparison of different methods on Food-101 and Food-172 datasets.

METHOD Query net  Query input Gallery Net Gallery Input ___ Food-101 Food-172
mAP (%) R1(%) mAP (%) R1(%)

(A)Training without the gallery network

ResNet101 [5] ResNet101 256 X 256 ResNet101 256 X 256 82.45 86.14 80.1 84.88
SwinV2 [11] SwinV2-T 256 X 256 SwinV2-T 256 X 256 76.86 87.13 71.64 86.63
(B) Training with ResNetl101 as the gallery network

VanillaKD [4] 1.78 0.99 1.02 1.74
RKD [16] 1.41 0.99 0.83 0.58
PKT [17] 1.47 0.99 0.94 0.00
FitNet [20] 41.16 49.5 46.18 55.81
CSD [25] ResNet18 64 X 64 ResNet101 256 X 256 53.24  53.47 63.98 66.86
RAML [21] 50.13 51.49 65.10  68.02
ROP [24] 50.87 51.49 58.12 63.37
CCKD [19] 51.38 50.5 65.73 70.35
D3still [26] 55.16 56.44 64.65 70.32
Ours 56.23 60.40 67.35 70.93

(C) Training with Swin-Transformer-V2 as the gallery network

VanillaKD [4] 1.68 0.99 0.88 0.58
RKD [16] 2.32 0.99 0.89 1.16
PKT [17] 1.35 0.99 0.91 0.00
FitNet [20] 44.59 53.47 51.73 61.05
CSD [25] ResNet18 64 X 64 SwinV2-T 256 X 256 53.15 58.42 62.02 70.35
RAML [21] 53.85 56.44 62.5 69.19
ROP [24] 49.86 58.42 60.14 70.93
CCKD [19] 54.59 61.39 61.28 70.35
D3still [26] 52.36 62.38 61.65 70.35
Ours 57.01 63.37 62.82 74.42
(D) Training with ResNet101 as the gallery network

VanillaKD [4] 176 099 082 058
RKD [16] 2.21 0.99  0.81 0.58
PKT [17] 1.67 0.99 1.12 1.16
FitNet [20] 27.64 43.56 28.34 27.91
CSD [25] MobileNetV3 64 X 64 ResNet101 256 X 256 50.02 51.49 57.06 56.4
RAML [21] 46.44 47.52 55.96 58.72
ROP [24] 43.30 46.53 39.5 45.35
CCKD [19] 46.89  49.5  47.11  49.42
D3still [26] 46.08 48.51 46.84 51.74
Ours 51.92 55.45 55.36 58.72

Table 2: Comparison of different methods on In-Shop and SOP datasets.

METHOD Query net Query input Gallery Net Gallery Input In-Shop SOP
mAP (%) R1(%) mAP (%) R1(%

(A) Training without the gallery network

ResNet101 [5] ResNet101 256 X 256 ResNetl101 256 X 256 81.96 95.42 72.06 86.92
SwinV2 [11] SwinV2-T 256 X 256 SwinV2-T 256 X 256 80.28 94.55 74.22 88.00
(B) Training with ResNetl101 as the gallery network

VanillaKD [4] 0.15 0.02 0.04 0.00
RKD [16] 0.15 0.06 0.03 0.00
PKT [17] 0.13 0.02 0.04 0.02
FitNet [20] 65.99 80.50 48.87 65.35
CSD [25] ResNet18 64 X 64 ResNet101 256 X 256 66.64 81.00 49.43 65.96
RAML [21] 67.18 81.85 49.46 66.24
ROP [24] 65.58 80.24  48.03 64.66
CCKD [19] 66.60 81.21 49.11 66.05
D3still [26] 68.56 83.96 51.12  68.42
Ours 69.43 84.79 52.16 69.58
(C) Training with Swin-Transformer-V2 as the gallery network

VanillaKD [4] 0.13 0.03 0.03 0.01
RKD [16] 0.14 0.04 0.04 0.02
PKT [17] 0.16 0.04 0.03 0.00
FitNet [20] 56.35 65.77 37.06 46.57
CSD [25] ResNet18 64 X 64 SwinV2-T 256 X 256 57.58 67.87 40.50 51.63
RAML [21] 57.34 67.42 40.64 51.97
ROP [24] 53.87 63.52 37.90 49.45
CCKD [19] 56.55 65.51 40.27 51.94
D3still [26] 60.19 72.07 43.32 56.98
Ours 62.13 74.93 44.00 57.47

(D) Training with ResNet101 as the gallery network

VanillaKD [4] 0.16 0.06 0.03 0.00
RKD [16] 0.15 0.03 0.03 0.00
PKT [17] 0.15 0.08 0.04 0.01
FitNet [20] 60.41 74.61 44.80  60.30
CSD [25] MobileNetV3 64 x 64  ResNetl0l 256 X 256 62.27  76.48 44.98  60.72
RAML [21] 62.29 76.13 45.52  61.48
ROP [24] 61.43 75.91 43.67 59.35
CCKD [19] 61.53 76.25 44.37  60.09
D3still [26] 63.58 79.43 45.80  62.72

Ours 64.29 80.27 46.68 63.67
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4.3 Comparison with Existing State-of-the-Art Methods

In this section, we conduct comparative experiments between the CLSD frame-
work and state-of-the-art methods to evaluate the superiority of our proposed
method in asymmetric image retrieval. To ensure a fair comparison, we re-
implement eight prior KD techniques for asymmetric image retrieval, as they
have different training configurations. Detailed comparative analysis is as fol-
lows.

As shown in Tables 1 and 2, pure relation distillation methods (e.g., RKD [16],
PKT [17], and VanillaKD [4]) fail to effectively improve query network perfor-
mance in asymmetric image retrieval. This is because they transfer only re-
lational knowledge, neglecting feature knowledge, leading to misaligned feature
spaces between networks. For instance, on ETH Food-101 [1], VanillaKD [4] only
achieves 0.15% mAP and 0.02% R1 with ResNet18 as the query and ResNet101
as the gallery network.

Our method significantly outperforms distillation techniques that primar-
ily optimize relational similarity differences, namely D3still [26], CSD [25], and
RAML [21]. For instance, when employing ResNet18 [5] as the query network
and ResNet101 [5] as the gallery network, our approach surpasses D3still on the
Food-101 dataset [1] by 1.07% mAP and 3.96% R1. On the Food-172 dataset [3],
our method achieves a higher mAP of 1.62% and R1 of 0.58% compared to the
previous best distillation method. On the In-shop dataset [12], it yields a mAP
gain of 0.87% and R1 gain of 0.83%. Additionally, it achieves a higher mAP of
1.04% and R1 of 1.16% on the SOP dataset [14]. Our method maintains supe-
rior performance even when increasing the semantic gap between the query and
gallery networks. For example, when using ResNet18 [5] as the query network and
SwinTransformerV2-Tiny [11] as the gallery network, our method on the Food-
101 dataset [1] exceeds CCKD by 2.42% mAP and 1.98% R1. Similarly, on the
In-shop dataset [12], it surpasses D3still by 1.94% mAP and 2.86% R1. It is note-
worthy that the performance of our method on the Food-172 dataset [3] is not
optimal when using MobileNetV3 as the query network and ResNet101 [5] as the
gallery network. This suggests that effectively balancing and transferring knowl-
edge of different granularities remains a challenge in certain datasets and net-
work configurations. Nevertheless, these experimental results demonstrate that
our method achieves state-of-the-art performance in most cases across various
network architectures.

Table 3: Ablation study on In-shop and ETH Food-101.

METHOD FLOPs (G) In-Shop ETH Food-101
mAP (%) R1 (%) mAP (%) R (%)
Gallery 12.99 81.96 95.42 82.45 86.14
Ly 025 6724 8191 51.18 5248
Ly + LsemcLp 0.25 68.77 83.61 52.78 56.93

Ly + Lsemcrp + Lirpd + Lerpa 0.25 69.43  84.79 57.01 63.37
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4.4 Ablation Experiments

As shown in Table 3, we conducted ablation experiments on the ETH Food-
101 [1] and In-shop datasets [12] to evaluate the effectiveness of each proposed
component. “Gallery” denotes the baseline of direct ResNet101 retrieval perfor-
mance without knowledge transfer. The base model on the query side is trained
with a combination of triplet loss L1 rrpr g1 and cross-entropy loss Ly srcr. We
progressively added three types of losses to the query network: L; as an auxil-
iary loss for learning feature representation knowledge from the gallery network;
LsemcLp to capture cross-layer semantic knowledge ; and finally, Lirpg + Lerpa
to transfer inconsistent and consistent pairwise similarity difference knowledge
for enhancing fine-grained relational features.

As can be clearly seen from Table 3, asymmetric image retrieval significantly
reduces the computational burden of the query network compared to symmetric
methods. Specifically, the inference computation for the query network is greatly
reduced from 12.99 GFLOPs to 0.25 GFLOPs. In addition, we observe that
introducing cross-layer knowledge can effectively improve retrieval performance.
For example, on the In-Shop dataset [12], after adding Lgemcrp, the mAP
increased by 1.53%, and R1 increased by 1.7%. On the ETH Food-101 dataset [1],
the mAP increased by 1.6%, and R1 increased by 4.45%. By further adding L;;pq
and L¢ypq, the mAP on the In-Shop dataset [12] increased by 0.66%, and R1
increased by 1.18%; on the ETH Food-101 dataset [1], the mAP increased by
4.23%, and R1 increased by 6.44%.

4.5 Visualization

To analyze method performance, we conducted Grad-CAM, t-SNE, and retrieval
visualization on the ETH Food-101 dataset [1]. As shown in Fig. 4, Grad-CAM
indicates our method more accurately focuses on target objects, effectively sup-
pressing background interference, and significantly improves retrieval perfor-
mance. As shown in Fig. 5, t-SNE visualization demonstrates our method forms
tighter clusters for the same class and maintains good inter-class separation in
the feature space, validating its effectiveness in semantic modeling and class
discrimination. As shown in Fig. 6, retrieval results further show our method
exhibits good generalization ability with accurate retrieval across multiple sub-
categories. Although minor confusion exists for some fine-grained categories, this
set of visualizations strongly supports the effectiveness of our method in image
understanding and retrieval.
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Fig. 6: Top-10 Retrieval Results on ETH Food-101

5 Conclusion

In conclusion, this paper presents CLSD, a novel framework for asymmetric
image retrieval. By introducing semantic-aware cross-layer feature distillation,
CLSD effectively bridges the structural gap between teacher and student net-
works. Additionally, the decoupled differential relation distillation based on un-
ambiguous samples enhances the student model’s retrieval consistency, especially
in fine-grained scenarios. Experimental results demonstrate that CLSD outper-
forms existing methods in both retrieval accuracy and lightweightness, making
it suitable for deployment on edge devices.
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